Advertisement

Open Bisimulation for Quantum Processes

  • Yuxin Deng
  • Yuan Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7604)

Abstract

Quantum processes describe concurrent communicating systems that may involve quantum information. We propose a notion of open bisimulation for quantum processes and show that it provides both a sound and complete proof methodology for a natural extensional behavioural equivalence between quantum processes. We also give a modal characterisation of the behavioural equivalence, by extending the Hennessy-Milner logic to a quantum setting.

Keywords

Quantum Channel Operational Semantic Quantum Process Proof Technique Quantum Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press (1990)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computer, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  3. 3.
    Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calculus. PhD thesis, University of Warwick (2011)Google Scholar
  4. 4.
    Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilistic bisimulation. Technical Report CMU-CS-11-110. Carnegie Mellon University (March 2011)Google Scholar
  5. 5.
    Deng, Y., Feng, Y.: Open bisimulation for quantum processes. Full Version of the current paper, http://arxiv.org/abs/1201.0416
  6. 6.
    Deng, Y., Hennessy, M.: On the Semantics of Markov Automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing Finitary Probabilistic Processes (Extended Abstract). In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimulations for quantum processes. Information and Computation 205(11), 1608–1639 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. In: Proc. POPL 2011, pp. 523–534. ACM (2011)Google Scholar
  10. 10.
    Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. Journal of Logic and Algebraic Programming 63(1), 131–173 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gay, S.J., Nagarajan, R.: Types and typechecking for communicating quantum processes. Mathematical Structures in Computer Science 16(03), 375–406 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Palsberg, J., Abadi, M. (eds.) Proc. POPL 2005, pp. 145–157 (2005)Google Scholar
  13. 13.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. ACM STOC, pp. 212–219 (1996)Google Scholar
  14. 14.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 78(2), 325 (1997)CrossRefGoogle Scholar
  15. 15.
    Hennessy, M.: A proof system for communicating processes with value-passing. Formal Aspects of Computer Science 3, 346–366 (1991)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hennessy, M., Ingólfsdóttir, A.: A theory of communicating processes value-passing. Information and Computation 107(2), 202–236 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  19. 19.
    Honda, K., Tokoro, M.: On reduction-based process semantics. Theoretical Computer Science 151(2), 437–486 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order pi-calculus revisited. Logical Methods in Computer Science 1(1:4) (2005)Google Scholar
  21. 21.
    Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the 1st Conference on Computing Frontiers, pp. 111–119. ACM (2004)Google Scholar
  22. 22.
    Lalire, M.: Relations among quantum processes: Bisimilarity and congruence. Mathematical Structures in Computer Science 16(3), 407–428 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Milner, R.: Communication and Concurrency. Prentice-Hall (1989)Google Scholar
  24. 24.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II. Information and Computation 100, 1–77 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press (2000)Google Scholar
  26. 26.
    Rathke, J., Sobociński, P.: Deriving Structural Labelled Transitions for Mobile Ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 462–476. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33(1), 69–97 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: Proc. LICS 2007, pp. 293–302. IEEE Computer Society (2007)Google Scholar
  29. 29.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press (2001)Google Scholar
  30. 30.
    Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. In: Proc. FOCS 1994, pp. 124–134 (1994)Google Scholar
  31. 31.
    Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Transactions on Computational Logic 10(3), 1–36 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Yuxin Deng
    • 1
    • 2
  • Yuan Feng
    • 3
    • 4
  1. 1.Shanghai Jiao Tong UniversityChina
  2. 2.Chinese Academy of SciencesChina
  3. 3.University of TechnologySydneyAustralia
  4. 4.Tsinghua UniversityChina

Personalised recommendations