Input-Driven Stack Automata

  • Suna Bensch
  • Markus Holzer
  • Martin Kutrib
  • Andreas Malcher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7604)


We introduce and investigate input-driven stack automata, which are a generalization of input-driven pushdown automata that recently became popular under the name visibly pushdown automata. Basically, the idea is that the input letters uniquely determine the operations on the pushdown store. This can nicely be generalized to stack automata by further types of input letters which are responsible for moving the stack pointer up or down. While visibly pushdown languages share many desirable properties with regular languages, input-driven stack automata languages do not necessarily so. We prove that deterministic and nondeterministic input-driven stack automata have different computational power, which shows in passing that one cannot construct a deterministic input-driven stack automaton from a nondeterministic one. We study the computational capacity of these devices. Moreover, it is shown that the membership problem for nondeterministic input-driven stack automata languages is NP-complete.


Regular Language Strict Inclusion Kolmogorov Complexity Input Symbol Weak Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, Article 16 (2009)Google Scholar
  2. 2.
    von Braunmühl, B., Verbeek, R.: Input-driven Languages are Recognized in logn Space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  3. 3.
    Chervet, P., Walukiewicz, I.: Minimizing Variants of Visibly Pushdown Automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chomsky, N.: Formal Properties of Grammars. In: Handbook of Mathematic Psychology, vol. 2, pp. 323–418. Wiley & Sons (1962)Google Scholar
  5. 5.
    Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 214–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Dymond, P.W.: Input-driven languages are in logn depth. Inform. Process. Lett. 26, 247–250 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  8. 8.
    Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland (1975)Google Scholar
  9. 9.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14, 389–418 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Han, Y.S., Salomaa, K.: Nondeterministic state complexity of nested word automata. Theoret. Comput. Sci. 410, 2961–2971 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hunt, H.: On the complexity of finite, pushdown and stack automata. Math. Systems Theory 10, 33–52 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Lange, K.J.: A note on the P-completeness of deterministic one-way stack languages. J. Univ. Comput. Sci. 16, 795–799 (2010)zbMATHGoogle Scholar
  14. 14.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications. Springer (1993)Google Scholar
  15. 15.
    Mehlhorn, K.: Pebbling Mountain Ranges and Its Application of DCFL-recongnition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  16. 16.
    Okhotin, A., Salomaa, K.: State Complexity of Operations on Input-Driven Pushdown Automata. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 485–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Piao, X., Salomaa, K.: Operational state complexity of nested word automata. Theoret. Comput. Sci. 410, 3290–3302 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Salomaa, A.: Formal Languages. ACM Monograph Series. Academic Press (1973)Google Scholar
  19. 19.
    Shamir, E., Beeri, C.: Checking Stacks and Context-free Programmed Grammars Accept P-complete Languages. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 27–33. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  20. 20.
    Sudborough, I.H.: On the tape complexity of deterministic context-free languages. J. ACM 25, 405–414 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Suna Bensch
    • 1
  • Markus Holzer
    • 2
  • Martin Kutrib
    • 2
  • Andreas Malcher
    • 2
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations