Advertisement

Unidirectional Channel Systems Can Be Tested

  • Petr Jančar
  • Prateek Karandikar
  • Philippe Schnoebelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7604)

Abstract

“Unidirectional channel systems” (Chambart & Schnoebelen, CONCUR 2008) are systems where one-way communication from a sender to a receiver goes via one reliable and one unreliable (unbounded fifo) channel. Equipping these systems with the possibility of testing regular properties on the contents of channels makes verification undecidable. Decidability is preserved when only emptiness and nonemptiness tests are considered: the proof relies on a series of reductions eventually allowing us to take advantage of recent results on Post’s Embedding Problem.

Keywords

Channel System Regular Language Reachability Problem Message Loss Channel Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. Formal Methods in System Design 14(3), 237–255 (1999)CrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theor. Comp. Sci. 221(1–2), 211–250 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Atig, M.F., Bouajjani, A., Touili, T.: On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Muscholl, A.: Analysis of Communicating Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 50–57. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Inf. Comp. 124(1), 20–31 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comp. 127(2), 91–101 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. Formal Methods in System Design 25(1), 39–65 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic systems with faulty communication. Inf. Comp. 202(2), 141–165 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Baier, C., Bertrand, N., Schnoebelen, P.: On Computing Fixpoints in Well-Structured Regular Model Checking, with Applications to Lossy Channel Systems. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties. ACM Trans. Comput. Logic 9(1) (2007)Google Scholar
  12. 12.
    Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.B.: Decidability and Complexity Results for Timed Automata via Channel Machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logics, vol. 3, ch. 15, pp. 869–926. Elsevier Science (2006)Google Scholar
  15. 15.
    Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Dynamic topological logics over spaces with continuous functions. In: Advances in Modal Logic, vol. 6, pp. 299–318. College Publications (2006)Google Scholar
  16. 16.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Computational Logic 9(2) (2008)Google Scholar
  17. 17.
    Schmitz, S., Schnoebelen, P.: Multiply-Recursive Upper Bounds with Higman’s Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: LICS 2008, pp. 205–216. IEEE Comp. Soc. Press (2008)Google Scholar
  19. 19.
    Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–364. IEEE Comp. Soc. Press (2012)Google Scholar
  20. 20.
    Chambart, P., Schnoebelen, P.: Mixing Lossy and Perfect Fifo Channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Chambart, P., Schnoebelen, Ph.: Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Chambart, P., Schnoebelen, P.: The ω-Regular Post Embedding Problem. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 97–111. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Chambart, P., Schnoebelen, P.: Pumping and Counting on the Regular Post Embedding Problem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 64–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the generalized intersection problem. In: LICS 2012, pp. 115–124. IEEE Comp. Soc. Press (2012)Google Scholar
  25. 25.
    Karandikar, P., Schnoebelen, P.: Cutting through Regular Post Embedding Problems. In: Lepistö, A. (ed.) CSR 2012. LNCS, vol. 7353, pp. 229–240. Springer, Heidelberg (2012)Google Scholar
  26. 26.
    Goubault-Larrecq, J.: On a generalization of a result by Valk and Jantzen. Research Report LSV-09-09, Laboratoire Spécification et Vérification, ENS Cachan, France (May 2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Petr Jančar
    • 1
  • Prateek Karandikar
    • 2
  • Philippe Schnoebelen
    • 3
  1. 1.Techn. Univ. OstravaCzech Republic
  2. 2.Chennai Mathematical InstituteIndia
  3. 3.LSV, ENS Cachan, CNRSFrance

Personalised recommendations