A Modular LTS for Open Reactive Systems

  • Fabio Gadducci
  • Giacoma Valentina Monreale
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7604)


The theory of reactive systems (RSs) represents a fruitful proposal for deriving labelled transition systems (LTSs) from unlabelled ones. The synthesis of an LTS allows for the use of standard techniques in the analysis of systems, as witnessed by the widespread adoption of behavioral semantics. Recent proposals addressed one of the main drawbacks of RSs, namely, its restriction to the analysis of ground (i.e., completely specified) systems. A still unresolved issue concerns the lack of a presentation via inference rules for the derived LTS, thus hindering the modularity of the presentation. Our paper considers open RSs. We first introduce a variant of the current proposal based on “luxes”: our technique is applicable to a larger number of case studies and, under some conditions, it synthesises a smaller LTS. Then, we illustrate how the LTS derived by using our approach can be equipped with a SOS-like presentation via an encoding into tile systems.


Open reactive systems labelled transitions tile systems 


  1. 1.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled Transitions for Mobile Ambients (As Synthesized Via a Graphical Encoding). In: EXPRESS 2008. ENTCS, vol. 242(1), pp. 73–98. Elsevier, Amsterdam (2009)Google Scholar
  2. 2.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive Systems, Barbed Semantics, and the Mobile Ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bruni, R., Gadducci, F., Montanari, U., Sobociński, P.: Deriving Weak Bisimulation Congruences from Reduction Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bruni, R., Meseguer, J., Montanari, U.: Symmetric Monoidal and Cartesian Double Categories as a Semantics Framework for tile Logic. MSCS 12(1), 53–90 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cardelli, L., Gordon, A.: Mobile Ambients. TCS 240(1), 177–213 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gadducci, F., Montanari, U.: The Tile Model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Kelly, G.M., Street, R.: Review of the Elements of 2-Categories. In: Sydney Category Seminar. LNM, vol. 420, pp. 75–103. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  8. 8.
    Klin, B., Sassone, V., Sobociński, P.: Labels from Reductions: Towards a General Theory. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 30–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    MacLane, S.: Categorical Algebra. Bull. Amer. Math. Soc. 71, 40–106 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Merro, M., Zappa Nardelli, F.: Behavioral Theory for Mobile Ambients. Journal of the ACM 52(6), 961–1023 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. TCS 96(1), 73–155 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Palmquist, P.H.: The Double Category of Adjoint Squares. In: Midwest Category Seminar. LNM, vol. 195, pp. 123–153. Springer, Heidelberg (1971)CrossRefGoogle Scholar
  14. 14.
    Power, A.J.: An Abstract Formulation for Rewrite Systems. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1989. LNCS, vol. 389, pp. 300–312. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  15. 15.
    Rathke, J., Sobociński, P.: Deriving Structural Labelled Transitions for Mobile Ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 462–476. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Sassone, V., Sobocinski, P.: Deriving Bisimulation Congruences Using 2-Categories. Nordic Journal of Computing 10(2), 163–183 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Fabio Gadducci
    • 1
  • Giacoma Valentina Monreale
    • 1
  • Ugo Montanari
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations