Relational Differential Prediction

  • Houssam Nassif
  • Vítor Santos Costa
  • Elizabeth S. Burnside
  • David Page
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7523)


A typical classification problem involves building a model to correctly segregate instances of two or more classes. Such a model exhibits differential prediction with respect to given data subsets when its performance is significantly different over these subsets. Driven by a mammography application, we aim at learning rules that predict breast cancer stage while maximizing differential prediction over age-stratified data. In this work, we present the first multi-relational differential prediction (aka uplift modeling) system, and propose three different approaches to learn differential predictive rules within the Inductive Logic Programming framework. We first test and validate our methods on synthetic data, then apply them on a mammography dataset for breast cancer stage differential prediction rule discovery. We mine a novel rule linking calcification to in situ breast cancer in older women.


Uplift modeling relational data mining differential prediction inductive logic programming ILP stratified data breast cancer in situ 


  1. 1.
    Allegra, C.J., Aberle, D.R., Ganschow, P., Hahn, S.M., Lee, C.N., Millon-Underwood, S., Pike, M.C., Reed, S., Saftlas, A.F., Scarvalone, S.A., Schwartz, A.M., Slomski, C., Yothers, G., Zon, R.: National Institutes of Health State-of-the-Science Conference Statement: Diagnosis and Management of Ductal Carcinoma In Situ. J. Natl. Cancer Inst. 102(3), 161–169 (2010)CrossRefGoogle Scholar
  2. 2.
    American Cancer Society: Breast Cancer Facts & Figures 2009-2010. American Cancer Society, Atlanta, USA (2009)Google Scholar
  3. 3.
    American Cancer Society: Cancer Facts & Figures 2009. American Cancer Society, Atlanta, USA (2009)Google Scholar
  4. 4.
    American College of Radiology, Reston, VA, USA: Breast Imaging Reporting and Data System (BI-RADSTM), 3rd edn. (1998)Google Scholar
  5. 5.
    American Educational Research Association/American Psychological Association/National Council on Measurement in Education: The Standards for Educational and Psychological Testing (1999)Google Scholar
  6. 6.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1-2), 285–297 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chyou, P.H.: Patterns of bias due to differential misclassification by case control status in a case control study. European Journal of Epidemiology 22, 7–17 (2007)CrossRefGoogle Scholar
  8. 8.
    Cleary, T.A.: Test bias: Prediction of grades of negro and white students in integrated colleges. Journal of Educational Measurement 5(2), 115–124 (1968)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Ramakrishnan, R., Santos Costa, V., Shavlik, J.: View Learning for Statistical Relational Learning: With an application to mammography. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 677–683 (2005)Google Scholar
  10. 10.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proc. of the 23rd International Conference on Machine Learning, Pittsburgh, PA, pp. 233–240 (2006)Google Scholar
  11. 11.
    De Raedt, L.: Logical and Relational Learning. Springer (2008)Google Scholar
  12. 12.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)zbMATHGoogle Scholar
  13. 13.
    Flegal, K.M., Keyl, P.M., Nieto, F.J.: Differential misclassification arising from nondifferential errors in exposure measurement. American Journal of Epidemiology 134(10), 1233–1244 (1991)Google Scholar
  14. 14.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Gajdos, C., Tartter, P.I., Bleiweiss, I.J., Bodian, C., Brower, S.T.: Stage 0 to stage III breast cancer in young women. J. Am. Coll. Surg. 190(5), 523–529 (2000)CrossRefGoogle Scholar
  16. 16.
    Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Proc. of the 27th European Conference on IR Research, pp. 345–359. Santiago de Compostela, Spain (2005)Google Scholar
  17. 17.
    Hansotia, B., Rukstales, B.: Incremental value modeling. Journal of Interactive Marketing 16(3), 35–46 (2002)CrossRefGoogle Scholar
  18. 18.
    Kelemen, L.E., Pankratz, V.S., Sellers, T.A., Brandt, K.R., Wang, A., Janney, C., Fredericksen, Z.S., Cerhan, J.R., Vachon, C.M.: Age-specific trends in mammographic density. American Journal of Epidemiology 167(9), 1027–1036 (2008)CrossRefGoogle Scholar
  19. 19.
    Larson, J., Michalski, R.S.: Inductive inference of VL decision rules. ACM SIGART Bulletin 63, 38–44 (1977)CrossRefGoogle Scholar
  20. 20.
    Linn, R.L.: Single-group validity, differential validity, and differential prediction. Journal of Applied Psychology 63, 507–512 (1978)CrossRefGoogle Scholar
  21. 21.
    Lo, V.S.: The true lift model - a novel data mining approach to response modeling in database marketing. SIGKDD Explorations 4(2), 78–86 (2002)CrossRefGoogle Scholar
  22. 22.
    Mandelson, M.T., Oestreicher, N., Porter, P.L., White, D., Finder, C.A., Taplin, S.H., White, E.: Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J. Natl. Cancer Inst. 92(13), 1081–1087 (2000)CrossRefGoogle Scholar
  23. 23.
    Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(4), 295–318 (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Muggleton, S.: Random train generator (1998),
  25. 25.
    Nassif, H., Page, D., Ayvaci, M., Shavlik, J., Burnside, E.S.: Uncovering age-specific invasive and DCIS breast cancer rules using Inductive Logic Programming. In: 1st ACM International Health Informatics Symposium, Arlington, VA, pp. 76–82 (2010)Google Scholar
  26. 26.
    Patani, N., Cutuli, B., Mokbel, K.: Current management of DCIS: a review. Breast Cancer Res. Treat 111(1), 1–10 (2008)CrossRefGoogle Scholar
  27. 27.
    Radcliffe, N.J., Surry, P.D.: Differential response analysis: Modeling true response by isolating the effect of a single action. In: Credit Scoring and Credit Control VI, Edinburgh, Scotland (1999)Google Scholar
  28. 28.
    Radcliffe, N.J., Surry, P.D.: Real-world uplift modelling with significance-based uplift trees. White Paper TR-2011-1, Stochastic Solutions (2011)Google Scholar
  29. 29.
    Rzepakowski, P., Jaroszewicz, S.: Decision trees for uplift modeling. In: 2010 IEEE International Conference on Data Mining, Sydney, Australia, pp. 441–450 (2010)Google Scholar
  30. 30.
    Sackett, P.R., Laczo, R.M., Lippe, Z.P.: Differential prediction and the use of multiple predictors: The omitted variables problem. Journal of Applied Psychology 88(6), 1046–1056 (2003)CrossRefGoogle Scholar
  31. 31.
    Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to filtering junk e-mail. In: AAAI Workshop on Learning for Text Categorization, Madison, WI (1998)Google Scholar
  32. 32.
    Santos Costa, V.: The life of a logic programming system. In: de la Banda, M.G., Pontelli, E. (eds.) Proceedings of the 24th International Conference on Logic Programming, Udine, Italy, pp. 1–6 (2008)Google Scholar
  33. 33.
    Society for Industrial and Organizational Psychology: Principles for the Validation and Use of Personnel Selection Procedures, 4th edn (2003)Google Scholar
  34. 34.
    Srinivasan, A.: The Aleph Manual, 4th edn. (2007),
  35. 35.
    Vicini, F.A., Recht, A.: Age at diagnosis and outcome for women with ductal carcinoma-in-situ of the breast: A critical review of the literature. Journal of Clinical Oncology 20(11), 2736–2744 (2002)CrossRefGoogle Scholar
  36. 36.
    Young, J.W.: Differential validity, differential prediction, and college admissions testing: A comprehensive review and analysis. Research Report 2001-6, The College Board, New York (2001)Google Scholar
  37. 37.
    Zelezný, F., Lavrac, N.: Propositionalization-based relational subgroup discovery with rsd. Machine Learning 62(1-2), 33–63 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Houssam Nassif
    • 1
  • Vítor Santos Costa
    • 2
  • Elizabeth S. Burnside
    • 1
  • David Page
    • 1
  1. 1.University of WisconsinMadisonUSA
  2. 2.University of PortoPortugal

Personalised recommendations