Advertisement

Reachability Analysis and Modeling of Dynamic Event Networks

  • Kathy Macropol
  • Ambuj Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7523)

Abstract

A wealth of graph data, from email and telephone graphs to Twitter networks, falls into the category of dynamic “event” networks. Edges in these networks represent brief events, and their analysis leads to multiple interesting and important topics, such as the prediction of road traffic or modeling of communication flow. In this paper, we analyze a novel new dynamic event graph property, the “Dynamic Reachability Set” (DRS), which characterizes reachability within graphs across time. We discover that DRS histograms of multiple real world dynamic event networks follow novel distribution patterns. From these patterns, we introduce a new generative dynamic graph model, DRS-Gen. DRS-Gen captures the dynamic graph properties of connectivity and reachability, as well as generates time values for its edges. To the best of our knowledge, DRS-Gen is the first such model which produces exact time values on edges, allowing us to understand simultaneity across multiple information flows.

Keywords

Graph Generator Dynamic Networks Reachability 

References

  1. 1.
    Akoglu, L., Faloutsos, C.: RTG: A Recursive Realistic Graph Generator Using Random Typing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 13–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Akoglu, L., Mcglohon, M., Faloutsos, C.: Rtm: Laws and a recursive generator for weighted time-evolving graphs. In: ICDM 2008 (2008)Google Scholar
  3. 3.
    Bailey, N.: The mathematical theory of infectious disease and its applications. Hafner Press (1975)Google Scholar
  4. 4.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical Processes on Complex Networks, New York, NY, USA (2008)Google Scholar
  6. 6.
    Bi, Z., Faloutsos, C., Korn, F.: The ”dgx” distribution for mining massive, skewed data. In: KDD, pp. 17–26 (2001)Google Scholar
  7. 7.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38 (June 2006)Google Scholar
  8. 8.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10, 1:1–1:26 (2008)CrossRefGoogle Scholar
  9. 9.
    Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)Google Scholar
  10. 10.
    Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)Google Scholar
  11. 11.
    Fabrikant, A., Koutsoupias, E., Papadimitriou, C.: Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends Mach. Learn. 2, 129–233 (2010)CrossRefGoogle Scholar
  13. 13.
    Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems and propagation. Proc. of TRSA: Math, Phys. Engr. Sci. 466, 753–770 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods (1999)Google Scholar
  15. 15.
    Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS (2004)Google Scholar
  16. 16.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42, 82–96 (2011)CrossRefGoogle Scholar
  17. 17.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proc. Found. of CS, pp. 57–66 (2000)Google Scholar
  18. 18.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.: The web as a graph. In: PODS, pp. 1–10. ACM, New York (2000)CrossRefGoogle Scholar
  19. 19.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD (2008)Google Scholar
  20. 20.
    Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD (2005)Google Scholar
  22. 22.
    Leskovec, J., Mcglohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading behavior in large blog graphs: Patterns and a model. Technical report (2006)Google Scholar
  23. 23.
    Leskovec, J., McGlohon, M., Faloutsos, C., Hurst, M.: Cascading behavior in large blog graphs patterns and a model. In: SDM (2007)Google Scholar
  24. 24.
    Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 10, 283 (2009)CrossRefGoogle Scholar
  25. 25.
    Macropol, K., Singh, A.: Scalable discovery of best clusters on large graphs. PVLDB 3(1), 693–702 (2010)Google Scholar
  26. 26.
    Macropol, K., Singh, A.K.: Content-based modeling and prediction of information dissemination. In: ASONAM (2011)Google Scholar
  27. 27.
    McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components: patterns and a generator. In: KDD, pp. 524–532 (2008)Google Scholar
  28. 28.
    Nickel, C.L.M.: Random Dot Product Graphs: A Model For Social Networks. PhD thesis, Johns Hopkins University, Maryland, USA (2006)Google Scholar
  29. 29.
    Pennock, D., Flake, G., Lawrence, S., Glover, E., Giles, C.L.: Winners don’t take all: Characterizing the competition for links on the web. In: PNAS (2002)Google Scholar
  30. 30.
    Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., Faloutsos, C.: Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 99–114. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the as-level internet topology. IEEE/ACM Trans. Netw. 11, 514–524 (2003)CrossRefGoogle Scholar
  32. 32.
    Snijders, T.A., van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-based models for network dynamics. Social Networks 32, 44–60 (2010)CrossRefGoogle Scholar
  33. 33.
    Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting: Algorithms and laws. In: ICDM (2008)Google Scholar
  34. 34.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: WOSN 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kathy Macropol
    • 1
  • Ambuj Singh
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations