Advertisement

Graph Mining for Object Tracking in Videos

  • Fabien Diot
  • Elisa Fromont
  • Baptiste Jeudy
  • Emmanuel Marilly
  • Olivier Martinot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7523)

Abstract

This paper shows a concrete example of the use of graph mining for tracking objects in videos with moving cameras and without any contextual information on the objects to track. To make the mining algorithm efficient, we benefit from a video representation based on dynamic (evolving through time) planar graphs. We then define a number of constraints to efficiently find our so-called spatio-temporal graph patterns. Those patterns are linked through an occurrences graph to allow us to tackle occlusion or graph features instability problems in the video. Experiments on synthetic and real videos show that our method is effective and allows us to find relevant patterns for our tracking application.

Keywords

Plane Graph Video Frame Object Tracking Pattern Mining Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 13+ (2006)CrossRefGoogle Scholar
  2. 2.
    Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: Proceedings ICDM. pp. 818–822 (2006)Google Scholar
  4. 4.
    Cai, L., He, L., Xu, Y., Zhao, Y., Yang, X.: Multi-object detection and tracking by stereo vision. Pattern Recogn. 43(12), 4028–4041 (2010)CrossRefGoogle Scholar
  5. 5.
    Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Mixed-drove spatiotemporal co-occurrence pattern mining. IEEE TKDE 20(10), 1322–1335 (2008)Google Scholar
  6. 6.
    Chang, R.F., Chen, C.J., Liao, C.H.: Region-based image retrieval using edgeflow segmentation and region adjacency graph. In: IEEE ICME, pp. 1883–1886 (2004)Google Scholar
  7. 7.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  8. 8.
    Diego, F., Evangelidis, G., Serrat, J.: Night-time outdoor surveillance by mobile cameras. In: ICPRAM (2012)Google Scholar
  9. 9.
    Dinh, T.B., Vo, N., Medioni, G.G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184 (2011)Google Scholar
  10. 10.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  11. 11.
    Goszczynska, H.: Object Tracking. InTech (2011)Google Scholar
  12. 12.
    Kim, Z.: Real time object tracking based on dynamic feature grouping with background subtraction. In: IEEE CVPR (2008)Google Scholar
  13. 13.
    Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: IEEE CVPR, pp. 685–692 (2010)Google Scholar
  14. 14.
    Prado, A., Jeudy, B., Fromont, E., Diot, F.: Mining spatiotemporal patterns in dynamic plane graphs. IDA Journal 17(1) (to appear, 2013)Google Scholar
  15. 15.
    Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE CVPR, pp. 2432–2439 (2010)Google Scholar
  16. 16.
    Yan, X., Han, J.: Gspan: Graph-based substructure pattern mining. In: IEEE ICDM, pp. 721–724 (2002)Google Scholar
  17. 17.
    Yang, H., Parthasarathy, S., Mehta, S.: A generalized framework for mining spatio-temporal patterns in scientific data. In: ACM SIGKDD, pp. 716–721 (2005)Google Scholar
  18. 18.
    Yu, Q., Medioni, G.: Multiple-target tracking by spatiotemporal monte carlo markov chain data association. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2196–2210 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabien Diot
    • 1
    • 2
  • Elisa Fromont
    • 1
  • Baptiste Jeudy
    • 1
  • Emmanuel Marilly
    • 2
  • Olivier Martinot
    • 2
  1. 1.Laboratoire Hubert Curien, UMR CNRS 5516Université de Lyon, Université Jean Monnet de Saint-EtienneSaint-EtienneFrance
  2. 2.Alcatel-Lucent Bell LabsCentre de VillarceauxNozayFrance

Personalised recommendations