Advertisement

PCA, Eigenvector Localization and Clustering for Side-Channel Attacks on Cryptographic Hardware Devices

  • Dimitrios Mavroeidis
  • Lejla Batina
  • Twan van Laarhoven
  • Elena Marchiori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7523)

Abstract

Spectral methods, ranging from traditional Principal Components Analysis to modern Laplacian matrix factorization, have proven to be a valuable tool for a wide range of diverse data mining applications. Commonly these methods are stated as optimization problems and employ the extremal (maximal or minimal) eigenvectors of a certain input matrix for deriving the appropriate statistical inferences. Interestingly, recent studies have questioned this “modus operandi” and revealed that useful information may also be present within low-order eigenvectors whose mass is concentrated (localized) in a small part of their indexes. An application context where localized low-order eigenvectors have been successfully employed is “Differential Power Analysis” (DPA). DPA is a well studied side-channel attack on cryptographic hardware devices (such as smart cards) that employs statistical analysis of the device’s power consumption in order to retrieve the secret key of the cryptographic algorithm. In this work we propose a data mining (clustering) formulation of the DPA process and also provide a theoretical model that justifies and explains the utility of low-order eigenvectors. In our data mining formulation, we consider that the key-relevant information is modelled as a “low-signal” pattern that is embedded in a “high-noise” dataset. In this respect our results generalize beyond DPA and are applicable to analogous low-signal, hidden pattern problems. The experimental results using power trace measurements from a programmable smart card, verify our approach empirically.

Keywords

Smart Card Cluster Structure Singular Vector Spectral Cluster Cluster Centroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power Analysis of Atmel CryptoMemory – Recovering Keys from Secure EEPROMs. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Correlation Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Cucuringu, M., Blondel, V.D., Van Dooren, P.: Extracting spatial information from networks with low-order eigenvectors. CoRR, abs/1111.0920 (2011)Google Scholar
  8. 8.
    Cucuringu, M., Mahoney, M.W.: Localization on low-order eigenvectors of data matrices. CoRR, abs/1109.1355 (2011)Google Scholar
  9. 9.
    Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random variables. Probability in the Engineering and Informational Sciences 1(01) (1987)Google Scholar
  10. 10.
    Ding, C.H.Q., He, X.: K-means clustering via principal component analysis. In: ICML (2004)Google Scholar
  11. 11.
    Fahn, P.N., Pearson, P.K.: IPA: A New Class of Power Attacks. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 173–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4) (2007)Google Scholar
  18. 18.
    Mahoney, M.W.: Randomized algorithms for matrices and data. Foundations and Trends in Machine Learning 3(2), 123–224 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. In: Advances in Information Security. Springer-Verlag New York, Inc., USA (2007)Google Scholar
  20. 20.
    Meinicke, P., Ritter, H.: Local pca learning with resolution-dependent mixtures of gaussians. In: Ninth International Conference on Artificial Neural Networks, ICANN 1999. (Conf. Publ. No. 470), vol. 1, pp. 497–502 (1999)Google Scholar
  21. 21.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal on Numerical Analysis 17(3), 403–409 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dimitrios Mavroeidis
    • 1
  • Lejla Batina
    • 1
  • Twan van Laarhoven
    • 1
  • Elena Marchiori
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenThe Netherlands

Personalised recommendations