Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Miniature, micro/mesoscale components with 3D features are in demand for various industries such as electro-optics, biomedical, electronics, aerospace, etc. Applications for which micro-products are needed include optical molds and assembly, medical diagnostic devices, medical implants, electronic devices and chemical micro-reactors. The microsystem technology market has grown steadily and with it the demand for high accuracy, complex shapes and a broader assortment of materials.

References

  1. 1.
    J. Chae, S. Park, T. Freiheit, Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006)CrossRefGoogle Scholar
  2. 2.
    D. Bourell, K.F. Ehmann, M.L. Culpepper, T.J. Hodgson, T.R. Kurfess, M. Madou, K. Rajurkar, R.E. DeVor, International Assessment of Research and Development in Micromanufacturing (World Technology Evaluation Center, Baltimore, 2005)Google Scholar
  3. 3.
    H. Wicht, J. Bouchaud, NEXUS Market Analysis for MEMS and Microsystems III 2005–2009, Setting the Pace for Micro Assembly Solutions, 2005Google Scholar
  4. 4.
    X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005)CrossRefGoogle Scholar
  5. 5.
    T. Masuzawa, State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000)CrossRefGoogle Scholar
  6. 6.
    G.L. Benavides, D.P. Adams, P. Yang, Meso-Machining Capabilities, Sandia Report, 2001Google Scholar
  7. 7.
    D. Huo, K. Cheng, F. Wardle, Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications. Int. J. Adv. Manuf. Technol. 47(9–12), 867–877 (2009)Google Scholar
  8. 8.
    Y. Okazaki, N. Mishima, K. Ashida, Microfactory-concept, history, and developments. J. Manuf. Sci. Eng. 126, 837 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Bang, K. Lee, S. Oh, 5-axis micro milling machine for machining micro parts. Int. J. Adv. Manuf. Technol. 25(9), 888–894 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Vogler, X. Liu, S. Kapoor, R. DeVor, K. Ehmann, Development of meso-scale machine tool (mMT) systems. Trans. NAMRI/SME 30, 653–661 (2002)Google Scholar
  11. 11.
    E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero-Ruiz, G. Velasco, L. Kasatkina, Development of micromachine tool prototypes for microfactories. J. Micromech. Microeng. 12, 795 (2002)CrossRefGoogle Scholar
  12. 12.
    S.W. Lee, R. Mayor, J. Ni, Dynamic analysis of a mesoscale machine tool. J. Manuf. Sci. Eng. 128, 194 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Li, X. Lai, C. Li, Z. Lin, J. Miao, J. Ni, Development of meso-scale milling machine tool and its performance analysis. Front. Mech. Eng. China 3(1), 59–65 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Takeuchi, Y. Sakaida, K. Sawada, T. Sata, Development of a 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanisms. CIRP Ann. Manuf. Technol. 49(1), 295–298 (2000)CrossRefGoogle Scholar
  15. 15.
    J.-K. Park, S.-K. Ro, B.-S. Kim, J.-H. Kyung, W.-C. Shin, J.-S. Choi, A precision meso scale machine tools with air bearings for microfactory, in 5th International Workshop on Microfactories, Besancon, France, 2006Google Scholar
  16. 16.
    Nanowave, Nano Corporation (2006), http://www.nanowave.co.jp/index_e.html
  17. 17.
    Robonano \(\alpha \)-0iA Brochure, Fanuc Ltd., http://www.fanuc.co.jp/en/product/robonano/index.htm
  18. 18.
    R. Blom, M. Kimman, H. Langen, P. van den Hof, R.M. Schmidt, Effect of miniaturization of magnetic bearing spindles for micro-milling on actuation and sensing bandwidths, in Proceedings of the Euspen International Conference, EUSPEN 2008, Zurich, Switzerland, 2008Google Scholar
  19. 19.
    D. Dornfeld, S. Min, Y. Takeuchi, Recent advances in mechanical micromachining. CIRP Ann. Manuf. Technol. 55(2), 745–768 (2006)CrossRefGoogle Scholar
  20. 20.
    A.G. Phillip, S.G. Kapoor, R.E. DeVor, A new acceleration-based methodology for micro/meso-scale machine tool performance evaluation. Int. J. Mach. Tools Manuf. 46(12–13), 1435–1444 (2006)CrossRefGoogle Scholar
  21. 21.
    T. Schaller, L. Bohn, J. Mayer, K. Schubert, Microstructure grooves with a width of less than 50 \(\upmu{\rm m} \) cut with ground hard metal micro end mills. Prec. Eng. 23, 229–235 (1999)Google Scholar
  22. 22.
    C.R. Knospe, Active magnetic bearings for machining applications. Control Eng. Pract. 15(3), 307–313 (2007)CrossRefGoogle Scholar
  23. 23.
    C.W. Lin, J.F. Tu, J. Kamman, An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. Int. J. Mach. Tools Manuf. 43(10), 1035–1050 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Binder, T. Schneider, High-speed inverter-fed ac drives, in Electrical Machines and Power Electronics, 2007. ACEMP ’07. International Aegean Conference on, pp. 9–16, 10–12 Sept 2007Google Scholar
  25. 25.
    A. Borisavljevic, H. Polinder, J. Ferreira, On the speed limits of permanent-magnet machines. IEEE Trans. Ind. Electron. 57(1), 220–227 (2010)Google Scholar
  26. 26.
    H. Langen, Microfactory research topics in the Netherlands, in The 5th International Workshop on Microfactories, Besancon, France, Oct 2006Google Scholar
  27. 27.
    J.F. Gieras, High speed machines, in Advancements in Electric Machines (Power Systems), ed. by J.F. Gieras (Springer, Berlin 2008)Google Scholar
  28. 28.
    High Speed, Calnetix Inc., http://www.calnetix.com/highspeed.cfm
  29. 29.
    L. Zhao, C. Ham, L. Zheng, T. Wu, K. Sundaram, J. Kapat, L. Chow, C. Siemens, A highly efficient 200,000 rpm permanent magnet motor system. IEEE Trans. Magn. 43(6), 2528–2530 (2007)CrossRefGoogle Scholar
  30. 30.
    C. Zwyssig, J.W. Kolar, S.D. Round, Megaspeed drive systems: pushing beyond 1 million r/min. IEEE/ASME Trans. Mechatron. 14(5), 598–605 (2009)Google Scholar
  31. 31.
    P. Mellor, M. Al-Taee, K. Binns, Open loop stability characteristics of synchronous drive incorporating high field permanent magnet motor. IEE Proc. B Electr. Power Appl. 138(4), 175–184 (1991)Google Scholar
  32. 32.
    M. Kimman, H. Langen, J. van Eijk, R. Schmidt, Design and realization of a miniature spindle test setup with active magnetic bearings, in Advanced Intelligent Mechatronics, 2007 IEEE/ASME International Conference on, pp. 1–6, 4–7 Sept 2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.EindhovenThe Netherlands

Personalised recommendations