Context-Constrained Multiple Instance Learning for Histopathology Image Segmentation
- 13 Citations
- 3.9k Downloads
Abstract
Histopathology image segmentation plays a very important role in cancer diagnosis and therapeutic treatment. Existing supervised approaches for image segmentation require a large amount of high quality manual delineations (on pixels), which is often hard to obtain. In this paper, we propose a new algorithm along the line of weakly supervised learning; we introduce context constraints as a prior for multiple instance learning (ccMIL), which significantly reduces the ambiguity in weak supervision (a 20% gain); our method utilizes image-level labels to learn an integrated model to perform histopathology cancer image segmentation, clustering, and classification. Experimental results on colon histopathology images demonstrate the great advantages of ccMIL.
Keywords
Image Segmentation Local Binary Pattern Mucinous Adenocarcinoma Cancer Image Multiple InstanceReferences
- 1.Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B.: Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering 2, 147–171 (2009)CrossRefGoogle Scholar
- 2.Yang, L., Tuzel, O., Meer, P., Foran, D.J.: Automatic Image Analysis of Histopathology Specimens Using Concave Vertex Graph. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 833–841. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 3.Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2000)CrossRefGoogle Scholar
- 4.Madabhushi, A.: Digital pathology image analysis: opportunities and challenges. Imaging in Medicine 1(1), 7–10 (2009)CrossRefGoogle Scholar
- 5.Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS (1997)Google Scholar
- 6.Liu, Q., Qian, Z., Marvasty, I., Rinehart, S., Voros, S., Metaxas, D.N.: Lesion-Specific Coronary Artery Calcium Quantification for Predicting Cardiac Event with Multiple Instance Support Vector Machines. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 484–492. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 7.Liang, J., Bi, J.: Computer Aided Detection of Pulmonary Embolism with Tobogganing and Mutiple Instance Classification in CT Pulmonary Angiography. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 630–641. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 8.Lu, L., Bi, J., Wolf, M., Salganicoff, M.: Effective 3D object detection and regression using probabilistic segmentation features in CT images. In: CVPR (2011)Google Scholar
- 9.Dundar, M., Badve, S., Raykar, V., Jain, R., Sertel, O., Gurcan, M.: A multiple instance learning approach toward optimal classification of pathology slides. In: ICPR (2010)Google Scholar
- 10.Quattoni, A., Wang, S., Morency, L., Collins, M., Darrell, T.: Hidden conditional random fields. IEEE Trans. PAMI 29(10), 1848–1852 (2007)CrossRefGoogle Scholar
- 11.Zhang, D., Liu, Y., Si, L., Zhang, J., Lawrence, R.D.: Multiple instance learning on structured data. In: NIPS (2011)Google Scholar
- 12.Xu, Y., Zhu, J.-Y., Chang, E., Tu, Z.: Multiple clustered instance learning for histopathology cancer image segmentation, classification and clustering. In: CVPR (2012)Google Scholar
- 13.Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(10), 1744–1757 (2010)Google Scholar
- 14.Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In: NIPS. MIT Press (2000)Google Scholar
- 15.Viola, P.A., Platt, J., Zhang, C.: Multiple instance boosting for object detection. In: NIPS (2005)Google Scholar
- 16.Babenko, B., Dollár, P., Tu, Z., Belongie, S.: Simultaneous learning and alignment: Multi-instance and multi-pose learning. In: Workshop of RealFaces (2008)Google Scholar