Advertisement

Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR

  • Darko Zikic
  • Ben Glocker
  • Ender Konukoglu
  • Antonio Criminisi
  • C. Demiralp
  • J. Shotton
  • O. M. Thomas
  • T. Das
  • R. Jena
  • S. J. Price
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7512)

Abstract

We present a method for automatic segmentation of high-grade gliomas and their subregions from multi-channel MR images. Besides segmenting the gross tumor, we also differentiate between active cells, necrotic core, and edema. Our discriminative approach is based on decision forests using context-aware spatial features, and integrates a generative model of tissue appearance, by using the probabilities obtained by tissue-specific Gaussian mixture models as additional input for the forest. Our method classifies the individual tissue types simultaneously, which has the potential to simplify the classification task. The approach is computationally efficient and of low model complexity. The validation is performed on a labeled database of 40 multi-channel MR images, including DTI. We assess the effects of using DTI, and varying the amount of training data. Our segmentation results are highly accurate, and compare favorably to the state of the art.

Keywords

Gaussian Mixture Model Necrotic Core Magnetic Resonance Spectroscopic Image Discriminative Approach Tumor Growth Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Bauer, S., Nolte, L.-P., Reyes, M.: Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Corso, J.J., Sharon, E., Dube, S., El-saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Medical Imaging 27(5) (2008)Google Scholar
  5. 5.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. FnT Computer Graphics and Vision (2012)Google Scholar
  6. 6.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Görlitz, L., Menze, B.H., Weber, M.-A., Kelm, B.M., Hamprecht, F.A.: Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic Images Using Discriminative Random Fields. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 224–233. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: ICPR (2002)Google Scholar
  9. 9.
    Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of brain tumors. Radiology 218 (2001)Google Scholar
  10. 10.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A Generative Model for Brain Tumor Segmentation in Multi-Modal Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Popuri, K., Cobzas, D., Murtha, A., Jägersand, M.: 3D variational brain tumor segmentation using dirichlet priors on a clustered feature set. Int. J. CARS (2011)Google Scholar
  12. 12.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis (2004)Google Scholar
  13. 13.
    Schmidt, M., Levner, I., Greiner, R., Murtha, A., Bistriz, A.: Segmenting brain tumors using alignment-based features. In: Proc. of ICMLA (2005)Google Scholar
  14. 14.
    Smith, S.M.: Fast robust automated brain extraction. Hum. Br. Map. (2002)Google Scholar
  15. 15.
    Verma, R., Zacharaki, E.I., Ou, Y., Cai, H., Chawla, S., Lee, A.-K., Melhem, E.R., Wolf, R., Davatzikos, C.: Multi-parametric tissue characterisation of brain neoplasm and their recurrence using pattern classification of MR images. Acad. Radiol. 15(8) (2008)Google Scholar
  16. 16.
    Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain Tumor Segmentation in 3-D MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 67–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Wen, P.Y., Macdonald, D.R., Reardon, D.A., Cloughesy, T.F., Sorensen, A.G., Galanis, E., Degroot, J., Wick, W., Gilbert, M.R., Lassman, A.B., Tsien, C., Mikkelsen, T., Wong, E.T., Chamberlain, M.C., Stupp, R., Lamborn, K.R., Vogelbaum, M.A., van den Bent, M.J., Chang, S.M.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. Am. J. Neuroradiol. (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Darko Zikic
    • 1
  • Ben Glocker
    • 1
  • Ender Konukoglu
    • 1
  • Antonio Criminisi
    • 1
  • C. Demiralp
    • 2
  • J. Shotton
    • 1
  • O. M. Thomas
    • 3
    • 4
  • T. Das
    • 3
  • R. Jena
    • 3
  • S. J. Price
    • 3
    • 5
  1. 1.Microsoft Research CambridgeUK
  2. 2.Brown UniversityProvidenceUSA
  3. 3.Cambridge University HospitalsCambridgeUK
  4. 4.Department of RadiologyCambridge UniversityUK
  5. 5.Department of Clinical NeurosciencesCambridge UniversityUK

Personalised recommendations