Skip to main content

Chlorophyll-Based Generators of Proton Potential

  • Chapter
  • First Online:
Principles of Bioenergetics

Abstract

The light-induced stages of chlorophyll-dependent photosynthesis are described. The main principles of photon energy transformation by living organisms are explained. The light-driven cyclic redox chain of purple bacteria is thoroughly discussed. Mechanisms of energy storage in the noncyclic photosynthetic chain of green and sulfur bacteria are reviewed. The oxygenic photosynthesis in cyanobacteria and chloroplasts is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In certain bacteria, one of the ubiquinone molecules is replaced by a menaquinone (MQ); see structure in Appendix 2.

  2. 2.

    Cytochromes are heme-containing proteins catalyzing redox processes (for heme structures, see Appendix 2). Cytochromes having the same heme group and differing in the protein moiety are usually indicated by the same letter but different numerical indexes.

References

  • Blankenship RE, Prince RC (1985) Excited state redox potentials and the Z scheme of photosynthesis. TIBS 10:382–383

    Google Scholar 

  • Clark RD, Hind G (1983) Spectrally distinct cytochrome b-563 components in a chloroplast cytochrome b-f complex: Interaction with a hydroxyquinoline N-oxide. PNAS 80:6249–6253

    Article  ADS  Google Scholar 

  • Cramer WA, Widger WR, Herrmann RG, Trebst A (1985) Topography and function of thylakoid membrane proteins. TIBS 10:125–129

    Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 426:149–185

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985a) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  ADS  Google Scholar 

  • Deisenhofer J, Michel H, Huber R (1985b) The structural basis of photosynthetic light reaction in bacteria. TIBS 10:243–248

    Google Scholar 

  • Deprez J, Trissl HW, Breton J (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution. PNAS 83:1699–1703

    Article  ADS  Google Scholar 

  • Drachev LA, Kaulen AD, Ostroumov SA, Skulachev VP (1974) Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane. FEBS Lett 39:43–45

    Article  Google Scholar 

  • Drachev LA, Kaulen AD, Semenov AY, Severina II, Skulachev VP (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins. Anal Biochem 96:250–262

    Article  Google Scholar 

  • Dracheva SM, Drachev LA, Zaberezhnaya SM, Konstantinov AA, Semenov A, Skulachev VP (1986) Spectral, redox and kinetic characteristics of high-potential cytochrome c hemes in Rhodopseudomonas viridis reaction center. FEBS Lett 205:41–46

    Article  Google Scholar 

  • Glaser EG, Crofts AR (1984) A new electrogenic step in the ubiquinol:cytochrome c 2 oxidoreductase complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 766:322–333

    Article  Google Scholar 

  • Hauska G, Samoray D, Orlich G, Nelson N (1980) Reconstitution of photosynthetic energy conservation. II. Photophosphorylation in liposomes containing photosystem-I reaction center and chloroplast coupling-factor complex. Eur J Biochem 111:535–543

    Article  Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria (1). Biochim Biophys Acta 1507:260–277

    Article  Google Scholar 

  • Hearst LE, Sauer K (1984) Protein sequence homologies between portions of the L and M subunit of reaction centers of Rhodopseudomonas capsulata and the QB-protein of chloroplast thylakoid membranes; a proposed relation to quinone-binding sites. Z Naturforsch 85:515–521

    Google Scholar 

  • Henderson R (1985) Membrane proteins: structure of a bacterial photosynthetic reaction centre. Nature 318:598–599

    Article  ADS  Google Scholar 

  • Hu X, Damjanovic A, Ritz T, Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. PNAS 95:5935–5941

    Article  ADS  Google Scholar 

  • Kayushin LP, Skulachev VP (1974) Bacteriorhodopsin as an electrogenic proton pump: reconstitution of bacteriorhodopsin proteoliposomes generating ΔΨ and ΔpH. FEBS Lett 39:39–42

    Article  Google Scholar 

  • Krasnovsky AA (1948) Reversible photochemical reduction of chlorophylls by ascorbic acid. Dokl Akad Nauk SSSR (Russ) 60:421–424

    Google Scholar 

  • Lopez JR, Tien HT (1984) Reconstitution of photosystem I reaction center into bilayer lipid membranes. Photobiochem Photobiophys 7:25–39

    Google Scholar 

  • Matveetz YA, Chekalin SV, Yartsev AA (1987) Femtosecond spectroscopy of the primary photoprocesses in Rhodopseudomonas sphaeroides reaction centers. Dokl Akad Nauk SSSR (Russ) 292:724–728

    Google Scholar 

  • Merchant S, Sawaya MR (2005) The light reactions: a guide to recent acquisitions for the picture gallery. Plant Cell 17:648–663

    Article  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Reviews 41:445–502

    Article  Google Scholar 

  • Mitchell P (1975) Protonmotive redox mechanism of the cytochrome bc 1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett 56:1–6

    Article  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    Article  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Molec Cell Biol 5:971–982

    Article  Google Scholar 

  • Nelson N, Hauska G (1979) Topography, resolution and reconstitution of the chloroplast membrane Membrane Bioenergetics. Addison-Wesley, London

    Google Scholar 

  • Okamura MY, Feher G, Nelson N (1982) Reaction centers. In: Govindjee (ed) Photosynthesis: energy conservation by plants and bacteria, vol 1. Academic Press, New York, pp 1394–1403

    Google Scholar 

  • Parson WW (1982) Photosynthetic bacterial reaction centers: interactions among the bacteriochlorophylls and bacteriopheophytins. Ann Rev Biophys Bioeng 11:57–80

    Article  Google Scholar 

  • Rich PR (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta 768:53–79

    Article  Google Scholar 

  • Robert B, Lutz M, Tiede DM (1985) Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rps. sphaeroides. FEBS Lett 183:326–330

    Google Scholar 

  • Saraste M (1984) Location of haem-binding sites in the mitochondrial cytochrome b. FEBS Lett 166:367–372

    Article  Google Scholar 

  • Severina II (1982) Nystatin: induced increase in photocurrent in the system “bacteriorhodopsin proteliposome/bilayer planar membrane”. Biochim Biophys Acta 681:311–317

    Article  Google Scholar 

  • Shuvalov VA, Asadov AA (1979) Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Photodichroism and circular dichroism of reaction centers at 100 K. Biochim Biophys Acta 545:296–308

    Article  Google Scholar 

  • Shuvalov VA, Duysens LN (1986) Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides. PNAS 83:1690–1694

    Article  ADS  Google Scholar 

  • Shuvalov VA, Amesz J, Duysen LNM (1986) Picosecond charge separation upon selective excitation of the primary electron donor in reaction centers of Phodopseudomonas viridis. Biochim Biophys Acta 851:327–330

    Article  Google Scholar 

  • Skulachev VP (1972) The driving forces and mechanisms of ion transport through coupling membranes. FEBS Simposia 28:371–385

    Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418

    Article  ADS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    Article  Google Scholar 

  • Widger WR, Cramer WA, Herrmann RG, Trebst A (1984) Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b 6 f complex: position of the cytochrome b hemes in the membrane. PNAS 81:674–678

    Article  ADS  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. The central role of the electric field. Biochim Biophys Acta 505:335–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). Chlorophyll-Based Generators of Proton Potential. In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics