Formal Modeling of Resource Management for Cloud Architectures: An Industrial Case Study

  • Frank S. de Boer
  • Reiner Hähnle
  • Einar Broch Johnsen
  • Rudolf Schlatte
  • Peter Y. H. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7592)


We show how aspects of performance, resource consumption, and deployment on the cloud can be formally modeled for an industrial case study of a distributed system, using the abstract behavioral specification language ABS. These non-functional aspects are integrated with an existing formal model of the functional system behavior, supporting a separation of concerns between the functional and non-functional aspects in the integrated model. The ABS model is parameterized with respect to deployment scenarios which capture different application-level management policies for virtualized resources. The model is validated against the existing system’s performance characteristics and used to simulate and compare deployment scenarios on the cloud.


Cloud Computing Virtual Machine Cloud Provider Replication System Deployment Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Systems. MIT Press (1986)Google Scholar
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a cost and termination analyzer for ABS. In: Proc. Partial Evaluation and Program Manipulation (PEPM 2012), pp. 151–154. ACM (2012)Google Scholar
  3. 3.
    Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: A Tool for Schedulability Analysis and Code Generation of Real-time Systems. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)Google Scholar
  5. 5.
    Bai, X., Li, M., Chen, B., Tsai, W.-T., Gao, J.: Cloud testing tools. In: Proc. Service Oriented System Engineering (SOSE 2011), pp. 1–12. IEEE (2011)Google Scholar
  6. 6.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model checking join forces. Comm. ACM 53(9), 76–85 (2010)CrossRefGoogle Scholar
  7. 7.
    Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: Space-aware ambients and processes. TCS 373(1-2), 41–69 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined schedulers for real-time concurrent objects. Innovations in Systems and Software Engineering (to appear, available online, 2012)Google Scholar
  9. 9.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems. IEEE Trans. Software Eng. 32(10), 812–830 (2006)CrossRefGoogle Scholar
  10. 10.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. Comm. ACM 54(9), 78–87 (2011)CrossRefGoogle Scholar
  11. 11.
    Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice Hall (2009)Google Scholar
  12. 12.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)CrossRefGoogle Scholar
  13. 13.
    Calheiros, R.N., Netto, M.A., Rose, C.A.F.D., Buyya, R.: EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of cloud computing applications. Software: Practice and Experience (to appear, available online, 2012)Google Scholar
  14. 14.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software, Practice and Experience 41(1), 23–50 (2011)CrossRefGoogle Scholar
  15. 15.
    Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer (2005)Google Scholar
  16. 16.
    Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.C.: Enforcing resource bounds via static verification of dynamic checks. ACM TOPLAS 29(5) (2007)Google Scholar
  17. 17.
    Douglass, B.P.: Real Time UML – Advances in the UML for Real-Time Systems. Addison-Wesley (2004)Google Scholar
  18. 18.
    Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D.S., Uchitel, S.: Model checking service compositions under resource constraints. In: Proc. European Software Engineering Conf. and Intl. Symp. on Foundations of Software Engineering (ESEC/FSE 2007), pp. 225–234. ACM (2007)Google Scholar
  19. 19.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)Google Scholar
  21. 21.
    Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Reallocation between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtualized Applications for the Cloud in Real-Time ABS. In: Proc. Formal Engineering Methods (ICFEM 2012). LNCS. Springer, Heidelberg (to appear, 2012)Google Scholar
  23. 23.
    Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Kramer, J.: Is abstraction the key to computing? Comm. ACM 50(4), 36–42 (2007)CrossRefGoogle Scholar
  25. 25.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Intl. Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)MATHCrossRefGoogle Scholar
  26. 26.
    Lee, E.A.: Computing needs time. Comm. ACM 52(5), 70–79 (2009)CrossRefGoogle Scholar
  27. 27.
    Moreau, L., Queinnec, C.: Resource aware programming. ACM TOPLAS 27(3), 441–476 (2005)CrossRefGoogle Scholar
  28. 28.
    Netjes, M., van der Aalst, W.M., Reijers, H.A.: Analysis of resource-constrained processes with Colored Petri Nets. In: Proc. Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005), DAIMI 576. University of Aarhus (2005)Google Scholar
  29. 29.
    Nuñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente, I.: iCanCloud: A flexible and scalable cloud infrastructure simulator. Journal of Grid Computing 10, 185–209 (2012), doi:10.1007/s10723-012-9208-5CrossRefGoogle Scholar
  30. 30.
    Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources for generating performance models from UML designs. Software and System Modeling 6(2), 163–184 (2007)CrossRefGoogle Scholar
  31. 31.
    Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of embedded software using free-choice Petri nets. In: Proc. Design Automation Conference (DAC 1999), pp. 805–810. ACM (1999)Google Scholar
  32. 32.
    Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Vulgarakis, A., Seceleanu, C.C.: Embedded systems resources: Views on modeling and analysis. In: Proc. Computer Software and Applications Conference (COMPSAC 2008), pp. 1321–1328. IEEE (2008)Google Scholar
  34. 34.
    Wong, P.Y.H., Diakov, N., Schaefer, I.: Modelling Adaptable Distributed Object Oriented Systems Using the HATS Approach: A Fredhopper Case Study. In: Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 49–66. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Frank S. de Boer
    • 1
  • Reiner Hähnle
    • 2
  • Einar Broch Johnsen
    • 3
  • Rudolf Schlatte
    • 3
  • Peter Y. H. Wong
    • 4
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Technical University of DarmstadtGermany
  3. 3.Dept. of InformaticsUniversity of OsloNorway
  4. 4.Fredhopper B.V.AmsterdamThe Netherlands

Personalised recommendations