Analysis of Revenue Improvements with Runtime Adaptation of Service Composition Based on Conditional Request Retries

  • Miroslav Živković
  • Hans van den Berg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7592)


In this paper we consider the runtime service adaptation mechanism for service compositions that is based on conditional retries. A single retry may be issued while a concrete service within composition is executed. This retry could either invoke the same concrete service or a functionally equivalent service implementing the same task. We determine the optimal moments to terminate the current request and replicate it. The calculation of these moments for each task within the workflow is based on different QoS parameters from Service Level Agreements, like services’ response–time distributions and cost–relating parameters. The calculations are performed taking into account the remaining actual time–to–deadline, and the benefit of conditional retry mechanism is illustrated by simulations. We further discuss the impact of costs and response–time distributions’ parameters to the solution at hand.


Service Oriented Architecture Optimal Retry Policies Watchdog Timer Hazard Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Preist, C.: A Conceptual Architecture for Semantic Web Services. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 395–409. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Ward, C., Buco, M.J., Chang, R.N., Luan, L.Z.: A Generic SLA Semantic Model for the Execution Management of E-business Outsourcing Contracts. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 363–376. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for Executing Adaptive Web-Service Processes. IEEE Software (24), 39–46 (2007)CrossRefGoogle Scholar
  4. 4.
    Baresi, L., Ghezzi, C., Guinea, S., Krämer, H.: Towards Self-healing Composition of Services. In: Krämer, B.J., Halang, W.A. (eds.) Contributions to Ubiquitous Computing. SCI, vol. 42, pp. 27–46. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    van Moorsel, A., Wolter, K.: Analysis of Restart Mechanisms in Software Systems. IEEE Trans. on Software Engineering (32), 547–558 (2006)CrossRefGoogle Scholar
  6. 6.
    van Moorsel, A., Wolter, K.: Optimal restart times for moments of completion time. IEEE Proc. of Software Engineering 151(5), 219–223 (2004)CrossRefGoogle Scholar
  7. 7.
    Wolter, K.: Stochastic Models for Restart, Rejuvenation and Checkpointing. Habilitation thesis, Humboldt-University, Berlin, Germany (2008)Google Scholar
  8. 8.
    Okamura, H., Dohi, T., Trivedi, K.S.: On-Line Adaptive Algorithms in Autonomic Restart Control. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 32–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive Management of Composite Services under Percentile-Based Service Level Agreements. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 381–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Leitner, P., Hummer, W., Dustdar, S.: Cost–Based Optimization of Service Compositions. Journal Trans. on Services Computing (TSC) (to appear)Google Scholar
  11. 11.
    Leitner, P., Hummer, W., Satzger, B., Dustdar, S.: Stepwise and Asynchronous Runtime Optimization of Web Service Compositions. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 290–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Živković, M., Bosman, J.W., van den Berg, H., van der Mei, R., Meeuwissen, H.B., Núñez–Queija, R.: Run-time Revenue Maximization for Composite Web Services with Response Time Commitments. In: 26th IEEE Conference on Advanced Information Networking and Applications, AINA (2012)Google Scholar
  13. 13.
    Yousefi, A., Down, D.G.: Request Replication: An Alternative to QoS Aware Service Selection. In: Proceedings of the 2011 IEEE Conference of Service Oriented Computing and Applications (SOCA 2011), pp. 1–4 (2011)Google Scholar
  14. 14.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS–aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  15. 15.
    Yang, Y., Tang, S., Xu, Y., Zhang, W., Fang, L.: An Approach to QoS-Aware Service Selection in Dynamic Web Service Composition. In: 3rd IEEE Int. Conf. on Networking and Services (ICNS 2007), pp. 18–23 (2007)Google Scholar
  16. 16.
    Wikipedia: Bimodal distribution,
  17. 17.
    Chen, L., Yang, J., Zhang, L.: Time Based QoS Modeling and Prediction for Web Services. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 532–540. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslav Živković
    • 1
  • Hans van den Berg
    • 1
    • 2
  1. 1.TNODelftThe Netherlands
  2. 2.University of TwenteEnschedeThe Netherlands

Personalised recommendations