Similarity-Based Appearance-Prior for Fitting a Subdivision Mesh in Gene Expression Images

  • Yen H. Le
  • Uday Kurkure
  • Nikos Paragios
  • Tao Ju
  • James P. Carson
  • Ioannis A. Kakadiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7510)

Abstract

Automated segmentation of multi-part anatomical objects in images is a challenging task. In this paper, we propose a similarity-based appearance-prior to fit a compartmental geometric atlas of the mouse brain in gene expression images. A subdivision mesh which is used to model the geometry is deformed using a Markov Random Field (MRF) framework. The proposed appearance-prior is computed as a function of the similarity between local patches at corresponding atlas locations from two images. In addition, we introduce a similarity-saliency score to select the mesh points that are relevant for the computation of the proposed prior. Our method significantly improves the accuracy of the atlas fitting, especially in the regions that are influenced by the selected similarity-salient points, and outperforms the previous subdivision mesh fitting methods for gene expression images.

Keywords

segmentation gene expression image subdivision mesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal of Computer Vision 32(2), 111–146 (1999)CrossRefGoogle Scholar
  2. 2.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. Int. J. Comput. Vision (IJCV) 55(2-3), 85–106 (2003)CrossRefGoogle Scholar
  3. 3.
    Warren, J., Weimer, H.: Subdivision methods for geometric design: A constructive approach. Morgan Kaufmann (2001)Google Scholar
  4. 4.
    Ju, T., Warren, J., Eichele, G., Thaller, C., Chiu, W., Carson, J.: A geometric database for gene expression data. In: Proc. Eurographics Symposium on Geometry Processing, pp. 166–176 (July 2003)Google Scholar
  5. 5.
    Kakadiaris, I.A., Bello, M., Arunachalam, S., Kang, W., Ju, T., Warren, J., Carson, J., Chiu, W., Thaller, C., Eichele, G.: Landmark-Driven, Atlas-Based Segmentation of Mouse Brain Tissue Images Containing Gene Expression Data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004, Part I. LNCS, vol. 3216, pp. 192–199. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bello, M., Ju, T., Carson, J.P., Warren, J., Chiu, W., Kakadiaris, I.A.: Learning-based segmentation framework for tissue images containing gene expression data. IEEE Transactions on Medical Imaging 26, 728–744 (2007)CrossRefGoogle Scholar
  7. 7.
    Kurkure, U., Le, Y., Paragios, N., Carson, J., Ju, T., Kakadiaris, I.: Markov random field-based fitting of a subdivision-based geometric atlas. In: Proc. IEEE (ICCV), Barcelona, Spain, November 6-13, pp. 2540–2547 (2011)Google Scholar
  8. 8.
    Ng, L., Pathak, S.D., Kuan, C., Lau, C., Dong, H., Sodt, A., Dang, C., Avants, B., Yushkevich, P., Gee, J.C., Haynor, D., Lein, E., Jones, A., Hawrylycz, M.: Neuroinformatics for genome-wide 3D gene expression mapping in the mouse Brain. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(3), 382–393 (2007)CrossRefGoogle Scholar
  9. 9.
    Yi, Z., Soatto, S.: Correspondence transfer for the registration of multimodal images. In: Proc. IEEE ICCV, Rio de Janeiro, Brazil, October 14-21, pp. 1–8 (2007)Google Scholar
  10. 10.
    Sotiras, A., Ou, Y., Glocker, B., Davatzikos, C., Paragios, N.: Simultaneous Geometric - Iconic Registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 676–683. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kurkure, U., Le, Y.H., Paragios, N., Carson, J.P., Ju, T., Kakadiaris, I.A.: Landmark/image-based deformable registration of gene expression data. In: Proc. IEEE (CVPR), Colorado Springs, CO, June 21-23, pp. 1089–1096 (2011)Google Scholar
  12. 12.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  13. 13.
    Ou, Y., Davatzikos, C.: DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 50–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Carson, J.P., Ju, T., Bello, M., Thaller, C., Warren, J., Kakadiaris, I.A., Chiu, W., Eichele, G.: Automated pipeline for atlas-based annotation of gene expression patterns: Application to postnatal day 7 mouse brain. Methods 50, 85–95 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yen H. Le
    • 1
  • Uday Kurkure
    • 1
  • Nikos Paragios
    • 1
    • 2
  • Tao Ju
    • 3
  • James P. Carson
    • 4
  • Ioannis A. Kakadiaris
    • 1
  1. 1.Computational Biomedicine LabUniversity of HoustonHoustonUSA
  2. 2.Center for Visual ComputingEcole Centrale de ParisFrance
  3. 3.Washington University in St. LouisUSA
  4. 4.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations