Steps That Lead to the Diagnosis of Thyroid Cancer: Application of Data Flow Diagram

  • Kallirroi Paschali
  • Anna Tsakona
  • Dimitrios Tsolis
  • Georgios Skapetis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 382)


The complete hospital information system supports the electronic patient record, which, with the history registration, its laboratory and depiction examinations through the use of expert systems, leads to the immediate and effective diagnosis and treatment of the illness. In this present study with the use of a data flow diagram, which consists of a small indication of the way an expert system based on Artificial Intelligence can be made applicable, the steps which lead to the diagnosis of thyroid cancer will be mentioned, when the patient is admitted to the outpatient Endocrinology department. With the data flow diagram, the users can visualize the way in which the system will operate and what it can achieve. Also it will present the course which the medical professional follows in order to reach the diagnosis of thyroid cancer with the slightest error percentage, using the medical information in the extensive hospital information system.


Thyroid Cancer Data flow diagram Artificial Intelligence Expert Systems 


  1. 1.
    Harrison, L.J.: Endocrinology. In: Parisianou, A.E. (ed.), Greece (2007)Google Scholar
  2. 2.
    Vainas, I., Chrisoulidou, A.: Thyroid Cancer. In: 2nd Postgraduate Symposium of Endocrine Oncology, Thessaloniki (2006)Google Scholar
  3. 3.
    Hegedus, L.: Thyroid ultrasound. Endocrinol. Metab. Clin. North Am. 30, 339–360 (2001)CrossRefGoogle Scholar
  4. 4.
    Dalles, K., Kostoglou-Athanasiou: Thyroid Cancer. Archives of Hellenic Medicine 24(3), 250–264 (2007)Google Scholar
  5. 5.
    Aschcraft, M.W., Van Herle, A.J.: Management of thyroid nodules. II: Scanning techniques, thyroid suppressive therapy, and fine-needle aspiration. Head Neck Surg. 3, 297–322 (1981)CrossRefGoogle Scholar
  6. 6.
    Danesse, D., Sciacchitano, S., Farsetti, A., Andreoli, M., Pontecorvi, A.: Diagnostic accuracy of conventional versus sonography-guided Fine-needle aspiration biopsy of thyroid nodules. Thyroid 8, 15–21 (1998)CrossRefGoogle Scholar
  7. 7.
    Cherib, H., Goellner, J.R.: Fine-needle aspiration of the thyroid: An appraisal. Ann. Intern. Med. 118, 282–289 (1993)Google Scholar
  8. 8.
    Luisa, C.M., Giancarlo, Z., Alberto, P., Antonio, C., Juan, R.: Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy (Article first published online: June 29, 2006)Google Scholar
  9. 9.
    Ain, K.B.: Papillary thyroid carcinoma. Etiology, assessment, and therapy. Endocr. Metab. Clin. North Am. 24, 711–760 (1995)Google Scholar
  10. 10.
    Mazzaferri, E.L.: Thyroid carcinoma: papillary and follicular. In: Mazzaferri, E.L., Samman, N. (eds.) Endocrine Tumors, p. 278. Blackwell Scientific Publication Inc., Cambridge (1993)Google Scholar
  11. 11.
    LiVolsi, V., Asa, S.L.: The demise of follicular carcinoma of the thyroid gland. Thyroid 4, 233 (1994)CrossRefGoogle Scholar
  12. 12.
    Sizemore, G.W.: Medullary carcinoma of the thyroid gland. Semin. Oncol. 14, 306 (1987)Google Scholar
  13. 13.
    Pasieka, J.L.: Anaplastic thyroid cancer. Curr. Opin. Oncol. 15, 78–83 (2003)CrossRefGoogle Scholar
  14. 14.
    Sherman, S.I.: Anaplastic thyroid carcinoma. UpToDate 15, 478–484 (2005)Google Scholar
  15. 15.
    Konstantakos, A.K.: Thyroid Anaplastic Carcinoma 29(4), 175–187 (2004)Google Scholar
  16. 16.
    Kiountouzis, E.: Analysis methodology and design of Information Systems. In: Evgenia, B.S. (ed.), Greece (2009)Google Scholar
  17. 17.
    Vlahavas, I., Kefalas, P., Vasiliadis, N., Kokoras, F., Sakillariou, I.: Artificial Intelligence, 3rd edn. University of Macedonia Press, Greece (2011)Google Scholar
  18. 18.
    Bishop, M.C.: Neural Networks and Pattern Recognition. Oxford University Press (1995)Google Scholar
  19. 19.
    Ripley, D.R.: Pattern Recognition and Neural Networks. Cambridge University Press (1996)Google Scholar
  20. 20.
    Mitchell, T.: Machine Learning. McGraw–Hill (1997)Google Scholar
  21. 21.
    Deskere, E., Anna, T.: Information Health Systems: Information and Communications Technology in the Health- Welfare field. Case study: A public Hospital Institution, PhD paper, Mesologgi, Greece (2008) Google Scholar
  22. 22.
    Vasilakopoulos, G., Xristikopoulos, V.: Management Information Systems. Publications Stamoulis, A., Greece (1990)Google Scholar
  23. 23.
    Health Level Seven International, Introduction to HL7 Standards (2012),
  24. 24.
    Warwick, C.: Metadata: an overview (retrieved January 6, 2010)Google Scholar
  25. 25.
    Nielsen, F.: Neural Networks-Algorithms and Applications. Niels Brock Business College (2008)Google Scholar
  26. 26.
    Von Altrock, C.: Fuzzy logic and Neurofuzzy Applications explained. Prentice Hall PTR, Upper Saddle River (1995)Google Scholar
  27. 27.
    McNeil, D., Freiberger, P.: Fuzzy Logic: The Revolutionary Computer Technology that is Changing our World, New York (1994)Google Scholar
  28. 28.
    Jeanette, L.: Introduction to Neural Networks. California Scientific Software Press (1994)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Kallirroi Paschali
    • 1
  • Anna Tsakona
    • 1
  • Dimitrios Tsolis
    • 1
  • Georgios Skapetis
    • 1
  1. 1.School of Engineering, Computer Engineering and Informatics DPTUniversity of PatrasPatras - RioGreece

Personalised recommendations