Skip to main content

Self-optimising Assembly Systems for Handling Large Components

  • Chapter
  • First Online:
Automation, Communication and Cybernetics in Science and Engineering 2011/2012

Abstract

In the field of assembly planning, optimisation approaches are often limited to partial evaluations of the value creation chain due to complex interactions between the components of the production system. The usage of situational adaptive systems helps to reduce the risk of overly focusing on individual elements without considering side-effects. Especially integrative, self-optimising structures offer great potential for improved planning efficiency. In this research a three-layered assembly planning model was established and implemented. The developed software structure includes a hybrid approach with offline planner, conducting all preliminary analysis with an assembly-by-disassembly strategy, and online planner, evaluating this information during the assembly to derive a suitable sequence for the current production situation. Furthermore a cognitive control unit is responsible for the decision-making and executes appropriate actions. For validation, a robot-supported assembly cell is presented. Two series of experiments were conducted to develop a concept that adapts the system behaviour to operators' expectations by using human-centred process logic. Additionally a lab study was designed to investigate the visual presentation of information to humans. The work achieved a scientific examination of cognitive mechanisms in automation. It shows that cognitive automation of production systems enables an efficient and robust assembly of diversified product families. This effectively makes customer-oriented mass production possible and offers high-wage countries considerable competitive advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DIN EN 61131-3. Speicherprogrammierbare Steuerungen. Teil 3: Programmiersprachen. Beuth, Berlin, 2003.

    Google Scholar 

  2. DIN EN 62264. Integration von Unternehmensführungs- und Leitsystemen. Beuth, Berlin, 2008.

    Google Scholar 

  3. Gerald J. Alred, Charles T. Brusaw, and Walter E. Oliu. The Handbook of Technical Writing. St. Martin's Press, 7 edition, 2003.

    Google Scholar 

  4. L. Bainbridge. Ironies of Automation. In Keith Duncan, Jens Rasmussen, and Jacques Leplat, editors, New Technology and Human Error. John Wiley & Sons Ltd, Chichester, 1987.

    Google Scholar 

  5. Aaron W. Bangor. Display Technology and Ambient Illumination Influences on Visual Fatigue at VDT Workstations. PhD thesis, Virginia Polytechnic Institute and State University, Virginia, 2000.

    Google Scholar 

  6. Franz Barachini. Match-time predictability in real-time production systems. In Georg Gottlob and Wolfgang Nejdl, editors, Expert Systems in Engineering Principles and Applications, volume 462 of Lecture Notes in Computer Science, pages 190–203. Springer, 1990.

    Chapter  Google Scholar 

  7. C. Brecher, K. Fayzullin, and F. Possel-Dölken. Optimierung flexibler Produktionsabläufe der Ablauffeinplanungsprobleme in flexiblen Fertigungssystemen. ATP – Automatisierungstechnische Praxis, 5(50):60–69, 2008.

    Google Scholar 

  8. Christian Brecher, Tobias Kempf, and Werner Herfs. Cognitive Control Technology for a Self-Optimizing Robot Based Assembly Cell. In Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, America Society of Mechanical Engineers. ASME, 2008.

    Google Scholar 

  9. R. W. Brennan. From FMS to HMS. In S. M. Deen, editor, Agent Based Manufacturing: Advances in the Holonic Approach. Springer, Berlin, 1 edition, 2003.

    Google Scholar 

  10. C. Castellini, E. Giunchiglia, and A. Tacchella. Improvements to sat-based conformant planning. In Proceedings of the 6th European Conference on Planning (ECP 2001), 2001.

    Google Scholar 

  11. H. Ding, S. Kain, F. Schiller, and O. Stursberg. A Control Architecture for Safe Cognitive Systems. In 10. Fachtagung zum Entwurf komplexer Automatisierungssysteme, Magdeburg, 2008.

    Google Scholar 

  12. E. Drumwright, V. Ng-Thow-Hing, and M. Mataric. Toward a Vocabulary of Primitive Task Programs for Humanoid Robots. In Proceedings of the International Conference on Development and Learning (ICDL), Bloomington, 2006. IN.

    Google Scholar 

  13. JA Enríquez Díaz, E. Frieling, J. Thiemich, and S. Kreher. Auswirkung eines Chaku-Chaku-Montagesystems auf die älteren Beschäftigten am Beispiel der Abgasanlagen-Montage. In GFA Gesellschaft für Arbeitswissenschaft e.V., editor, Neue Arbeits- und Lebenswelten gestalten. GfA-Press, Dortmund, 2010.

    Google Scholar 

  14. Walter Eversheim. Organisation in der Produktionstechnik. Band 2, Konstruktion. Springer, Berlin, 1998.

    Google Scholar 

  15. Joachim Funke and Peter A. Fensch. Handbuch der Psychologie: Handbuch der Allgemeinen Psychologie – Kognition: BD 5. Hogrefe-Verlag, Göttingen, 2006.

    Google Scholar 

  16. U. Frank, H. Giese, F. Klein, O. Oberschelp, A. Schmidt, B. Schulz, H. Vöcking, and W. Katrin. Selbstoptimierende Systeme des Maschienenbaus. Definitionen und Konzepte. In Sonderforschungsbereich 614. Bonifatius, Paderborn, 2004.

    Google Scholar 

  17. Andy Field. Discovering Statistics Using SPSS. Sage Publications Ltd, London, 2005.

    Google Scholar 

  18. E. Frieling and O. Sträter. Folgeantrag im Rahmen des Schwerpunktprogramms 1184 „Altersdifferenzierte Arbeitssysteme“. Universität Kassel, Fachbereich Maschinenbau (unveröffentlichter Forschungsbericht). Technical report, Universität Kassel, Fachbereich Maschinenbau, Kassel, 2009.

    Google Scholar 

  19. E. Gat. Three-Layer Architectures. In David Kortenkamp, R. Peter Bonasso, and Robin R. Murphy, editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pages 195–211. AAAI Press, 1998.

    Google Scholar 

  20. Jürgen Gausemeier, Franz Josef Rammig, and Wilhelm Schäfer. Selbstoptimierende Systeme des Maschinenbaus: Definitionen, Anwendungen, Konzepte. HNI-Verlagsschriftenreihe. HNI-Verlag, 2009.

    Google Scholar 

  21. Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):199–220, 1993.

    Article  Google Scholar 

  22. V Gazzola, G Rizzolatti, B Wicker, and C Keysers. The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. NeuroImage, 35(4):1674–1684, 2007. PMID: 17395490.

    Article  Google Scholar 

  23. Jörg Hoffmann and R. Brafman. Contingent planning via heuristic forward search with implicit belief states. pages 71–80. AAAI, 2005.

    Google Scholar 

  24. L.S. Homem de Mello and A.C. Sanderson. And/Or graph representation of assembly plans. In Proceedings of 1986 AAAI National Conference on AI, pages 1113–1119, 1986.

    Google Scholar 

  25. Eckart Hauck, Arno Gramatke, and Klaus Henning. Cognitive Technical Systems in a Production Environment. In Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, Madeira, Portugal, 2008.

    Google Scholar 

  26. P.E. Hart, N.J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

    Article  Google Scholar 

  27. Joerg Hoffmann. FF: The Fast-Forward Planning System. AI Magazine, 22(3), 2001.

    Google Scholar 

  28. Barbara Hayes-Roth. A blackboard architecture for control. Artif. Intell., 26(3):251–321, 1985.

    Article  Google Scholar 

  29. Sören et al. Kammel. Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9):615–639, 2008.

    Article  Google Scholar 

  30. Tobias Achim Kempf. Ein kognitives Steuerungsframework für robotergestützte Handhabungsaufgaben. Apprimus Wissenschaftsver, Aachen, 2010.

    Google Scholar 

  31. Steffen Kinkel, Michael Friedewald, Bärbel Hüsing, Gunter Lay, and Ralf Lindner. Arbeiten in der Zukunft: Strukturen und Trends der Industriearbeit. Edition Sigma, 2008.

    Google Scholar 

  32. Samin Karim, Liz Sonenberg, and Ah-hwee Tan. A Hybrid Architecture Combining Reactive Plan Execution and Reactive Learning. In Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI), China, 2006.

    Google Scholar 

  33. S.G. Kaufman, R.H. Wilson, R.E. Jones, T.L. Calton, and A.L. Ames. The Archimedes 2 mechanical assembly planning system. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, volume 4, pages 3361–3368, 1996.

    Google Scholar 

  34. D. Liepmann, A. Beauducel, B. Brocke, and R. Amthauer. I-S-T 2000. Intelligenz-Struktur-Test 2000. Hogrefe, Verlag für Psychologie, Göttingen, 2007.

    Google Scholar 

  35. A. C. Lin and T. Chang. An integrated approach to automated assembly planning for three-dimensional mechanical products. International Journal of Production Research, 31(5):1201–1227, 1993.

    Article  Google Scholar 

  36. Pat Langley, Kirstin Cummings, and D. Shapiro. Hierarchical skills and cognitive architectures. In Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society, pages 779–784, Chicago, 2004.

    Google Scholar 

  37. K. Leiden, K. R. Laughery, J. Keller, J. French, W. Warwick, and S. D. Wood. A Review of Human Performancer Models for the Prediction of Human Error. Prepared for: National Aeronautics and Space Administration System-Wide Accident Prevention Program. Ames Research Center, Moffet Filed CA. Technical report, 2001.

    Google Scholar 

  38. Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10(2):141–160, 2009.

    Article  Google Scholar 

  39. S. P. Marshall. Cognitive Models of Tactical Decision Making. In W. Karowski and Salvendy, editors, Proceedings of the 2nd International Conference on Applied Human Factors and Ergonomic (AHFE) 14.–17. July 2008, Las Vegas, Nevada, USA, 2008.

    Google Scholar 

  40. Henry Mintzberg, S. Ghoshal, and James B. Quinn. The Strategy Process. Prentice Hall International, Hemel Hempstead, 1995.

    Google Scholar 

  41. Marcel Mayer, Barbara Odenthal, Marco Faber, Wolfgang Kabuß, Bernhard Kausch, and Christopher Schlick. Simulation of Human Cognition in Self-Optimizing Assembly Systems. In Proceedings of 17th World Congress on Ergonomics IEA 2009, Beijing, 2009.

    Google Scholar 

  42. Marcel Mayer, Barbara Odenthal, M. Grandt, and Christopher Schlick. Anforderungen an die benutzerzentrierte Gestaltung einer Kognitiven Steuerung für Selbstoptimierende Produktionssysteme. In Gesellschaft für Arbeitswissenschaft eV, editor, Produkt- und Produktions-Ergonomie – Aufgabe für Entwickler und Planer. GfA-Press, Dortmund, 2008.

    Google Scholar 

  43. D. Meyer, T. Steil, and S. Müller. Shared Augmented Reality zur Unterstützung mehrerer Benutzer bei kooperativen Montagearbeiten im verdeckten Bereich. In Torsten Kuhlen, Leif Kobbelt, and Stefan Müller, editors, Virtuelle und Erweiterte Realität: 2. Workshop der GI-Fachgruppe VR/AR. Shaker, Aachen, 2005.

    Google Scholar 

  44. Barbara Odenthal, Marcel Mayer, M. Grandt, and Christopher Schlick. Concept of an adaptive training system for production. In A. Hinneburg, editor, Lernen – Wissen – Adaption, Workshop Proceedings. Martin-Luther-University, Halle-Wittenberg, 2007.

    Google Scholar 

  45. Barbara Odenthal, Marcel Mayer, M. Grandt, and Christopher Schlick. Konzept eines Lehr-/Lernsystems einer kognitiven Steuerung für Selbstoptimierende Produktionssysteme. In Gesellschaft für Arbeitswissenschaft e.V, editor, Produkt- und Produktions-Ergonomie – Aufgabe für Entwickler und Planer. GfA-Press, Dortmund, 2008.

    Google Scholar 

  46. Barbara Odenthal, Marcel Ph. Mayer, Wolfgang Kabuß, Bernhard Kausch, and Christopher M. Schlick. Error Detection in an Assembly Object Using an Augmented Vision System. In Proceedings of 17th World Congress on Ergonomics IEA 2009, Beijing, 2009.

    Google Scholar 

  47. Barbara Odenthal, Marcel Ph. Mayer, Wolfgang Kabuß, Bernhard Kausch, and Christopher M. Schlick. An empirical study of disassembling using an augmented vision system. In Proceedings of the Third international conference on Digital human modeling, pages 399–408, Berlin, 2011. Springer-Verlag.

    Google Scholar 

  48. Reiner Onken and Axel Schulte. System-Ergonomic Design of Cognitive Automation: Dual-Mode Cognitive Design of Vehicle Guidance and Control Work Systems. Springer, Berlin Heidelberg, 2010.

    Google Scholar 

  49. S. K. Ong, M. L. Yuan, and A. Y. C. Nee. Augmented reality applications in manufacturing: a survey. International Journal of Production Research, 46(10):2707–2742, 2008.

    Article  MATH  Google Scholar 

  50. K. Paetzold. On the importance of a functional description for the development of cognitive technical systems. Proceedings of the 9th International Design Conference DESIGN 2006, pages 967–974, 2006.

    Google Scholar 

  51. F. Possel-Dölken. Projektierbares Multiagentensystem für die Ablaufsteuerung in der flexibel automatisierten Fertigung. Shaker Verlag, Aachen, 2006.

    Google Scholar 

  52. Michaël E. Porter. Competitive Strategy. Free Press, New York, 2004.

    Google Scholar 

  53. Tilo Pfeifer and R. Schmitt. Autonome Produktionszellen. Springer, Berlin, 2006.

    Book  Google Scholar 

  54. Claudius Pfendler and Christopher Schlick. A comparative study of mobile map displays in a geographic orientation task. Behaviour & Information Technology, 26(6):455–463, 2007.

    Article  Google Scholar 

  55. Henrik J. Putzer. Ein uniformer Architekturansatz für kognitive Systeme und seine Umsetzung in ein operatives Framework. Köster, Berlin, 2004.

    Google Scholar 

  56. Jens Rasmussen. Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering. Elsevier Science Inc., New York, NY, USA, 1986.

    Google Scholar 

  57. Björn Rasch, Malte Friese, Wilhelm Johann Hofmann, and Ewald Naumann. Quantitative Methoden, Bd. 1. Springer, Berlin, 2004.

    Google Scholar 

  58. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2003.

    Google Scholar 

  59. R. Schmitt and P. Beaujean. Selbstoptimierende Produktionssysteme. Zeitschrift für wirtschaftliche Fabrikation, 9:520–524, 2007.

    Google Scholar 

  60. Christopher Schlick. Modellbasierte Gestaltung der Benutzungsschnittstelle autonomer Produktionszellen, volume 61 of Schriftenreihe Rationalisierung und Humanisierung. Shaker Verlag, Aachen, 1999.

    Google Scholar 

  61. Thomas B. Sheridan. Humans and Automation: System Design and Research Issues. John Wiley & Sons Inc., New York, 2002.

    Google Scholar 

  62. R. Schmitt, M. Isermann, and N. Matuschek. Cognitive optimization of an automotive rear-axle drive production process. Journal of Machine Engineering, 9(4):78–90, 2009.

    Google Scholar 

  63. Roger N. Shepard and Jacqueline Metzler. Mental Rotation of Three-Dimensional Objects. Science, 171(972):701–703, 1971.

    Article  Google Scholar 

  64. Christopher Schlick, Marcel Mayer, and Barbara Odenthal. MTM als Prozesslogik für die kognitiv automatisierte Montage. In Dr Bernd Britzke, editor, MTM in einer globalisierten Wirtschaft. Arbeitsprozesse systematisch gestalten und optimieren. mi-Wirtschaftsbuch, München, 2010.

    Google Scholar 

  65. Günther Schuh and Simon Orilski. Roadmapping for competitiveness of high wage countries. In Proceedings of the XVIII. ISPIM Conference. Warschau, Polen, Warschau, Polen, 2007.

    Google Scholar 

  66. Christopher Schlick, Barbara Odenthal, Marcel Mayer, Jan Neuhöfer, M. Grandt, Bernhard Kausch, and S. Mütze-Niewöhner. Design and Evaluation of an Augmented Vision System for Self-Optimizing Assembly Cells. In Christopher Schlick, editor, Industrial Engineering and Ergonomics. Springer, Berlin, 2009.

    Chapter  Google Scholar 

  67. Hans Strohner. Kognitive Systeme. Eine Einführung in die Kognitionswissenschaft. VS Verlag für Sozialwissenschaften, 1995 edition, 1995.

    Google Scholar 

  68. Ulrike Thomas. Automatisierte Programmierung von Robotern für Montageaufgaben. Shaker, Braunschweig, 2008.

    Google Scholar 

  69. Sebastian et al. Thrun. Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692, 2008.

    MathSciNet  Google Scholar 

  70. A. Tang, C. Owen, F. Biocca, and M. Weimin. Performance Evaluation of Augmented Reality for Directed Assembly. In S. K. Ong and A. Y. C. Nee, editors, Virtual and Augmented Reality Applications in Manufacturing. Springer, New York, 2004.

    Google Scholar 

  71. Yen F Tai, Christoph Scherfler, David J Brooks, Nobukatsu Sawamoto, and Umberto Castiello. The human premotor cortex is `mirror' only for biological actions. Current biology, 14(2):117–120, 2004. PMID: 14738732.

    Article  Google Scholar 

  72. D. Upton. A flexible structure for computer-controlled manufacturing systems. Manufacturing Review, 5(1):58–74, 1992.

    Google Scholar 

  73. Chris et al. Urmson. Autonomous driving in urban environments: Boss and the Urban Challenge. J. Field Robot., 25(8):425–466, 2008.

    Article  Google Scholar 

  74. M. F. Zaeh, M. Beetz, K. Shea, G. Reinhart, K. Bender, C. Lau, M. Ostgathe, W. Vogl, M. Wiesbeck, M. Engelhard, C. Ertelt, T. Rühr, M. Friedrich, and S. Herle. The Cognitive Factory. In Hoda A. ElMaraghy, editor, Changeable and Reconfigurable Manufacturing Systems, Springer Series in Advanced Manufacturing, pages 355–371. Springer London, 2009.

    Chapter  Google Scholar 

  75. M. Zaeh and M. Wiesbeck. A Model for Adaptively Generating Assembly Instructions Using State-based Graphs. In Manufacturing Systems and Technologies for the New Frontier. Springer, London, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eckart Hauck or Sabina Jeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayer, M. et al. (2013). Self-optimising Assembly Systems for Handling Large Components. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds) Automation, Communication and Cybernetics in Science and Engineering 2011/2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33389-7_53

Download citation

Publish with us

Policies and ethics