On Temporal Logic and Signal Processing

  • Alexandre Donzé
  • Oded Maler
  • Ezio Bartocci
  • Dejan Nickovic
  • Radu Grosu
  • Scott Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7561)


We present Time-Frequency Logic (TFL), a new specification formalism for real-valued signals that combines temporal logic properties in the time domain with frequency-domain properties. We provide a property checking framework for this formalism and illustrate its expressive power in defining and recognizing properties of musical pieces. Like hybrid automata and their analysis techniques, the TFL formalism is a contribution to a unified systems theory for hybrid systems.


Temporal Logic Window Function Analog Circuit Short Time Fourier Transform Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with events and relations: the signal language and its semantics. Sci. Comput. Program. 16(2), 103–149 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for programming synchronous systems. In: POPL, pp. 178–188 (1987)Google Scholar
  3. 3.
    Chakarov, A., Sankaranarayanan, S., Fainekos, G.: Combining Time and Frequency Domain Specifications for Periodic Signals. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 294–309. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    d’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous systems. In: TIME, pp. 166–174. IEEE (2005)Google Scholar
  5. 5.
    Donzé, A.: Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS One 6(9) (2011)Google Scholar
  7. 7.
    Donzé, A., Maler, O.: Robust Satisfaction of Temporal Logic over Real-Valued Signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fourier, J.B.G.: Theórie analytique de la chaleur. Gauthier-Villars et fils (1888)Google Scholar
  9. 9.
    Frigo, M., Johnson, S.G.: The fastest Fourier transform in the west. Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology (September 1997)Google Scholar
  10. 10.
    Gabor, D.: Theory of communication. part 1: The analysis of information electrical engineers. Journal of the IEEE - Part III: Radio and Communication Engineering 93(26), 429–441 (1946)Google Scholar
  11. 11.
    Giorgidze, G., Nilsson, H.: Switched-On Yampa. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 282–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Grosu, R., Bartocci, E., Corradini, F., Entcheva, E., Smolka, S.A., Wasilewska, A.: Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 229–243. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Communications of the ACM 52(3), 1–10 (2009)CrossRefGoogle Scholar
  14. 14.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, pp. 477–498. Springer (1985)Google Scholar
  15. 15.
    Hubbard, B.B.: The world according to wavelets. The story of a mathematical technique in the making, 2nd edn. CRC Press (2010)Google Scholar
  16. 16.
    Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, Robots, and Functional Reactive Programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 159–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Jones, K., Konrad, V., Nickovic, D.: Analog property checkers: a DDR2 case study. Formal Methods in System Design (2009)Google Scholar
  18. 18.
    Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2-3), 397–428 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Maler, O., Nickovic, D.: Monitoring Temporal Properties of Continuous Signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and Continuous Behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (2008)Google Scholar
  23. 23.
    Michel, M.: Composition of temporal operators. Logique et Analyse 110-111, 137–152 (1985)Google Scholar
  24. 24.
    Mukherjee, S., Dasgupta, P., Mukhopadhyay, S.: Auxiliary specifications for context-sensitive monitoring of AMS assertions. IEEE Transactions on CAD 30(10), 1446–1457 (2011)CrossRefGoogle Scholar
  25. 25.
    Nickovic, D., Maler, O.: AMT: A Property-Based Monitoring Tool for Analog Systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Pembeci, I., Nilsson, H., Hager, G.: Functional reactive robotics: an exercise in principled integration of domain-specific languages. In: PADP, pp. 168–179. ACM (2002)Google Scholar
  27. 27.
    Pino, J.L., Ha, S., Lee, E.A., Buck, J.T.: Software synthesis for DSP using Ptolemy. VLSI Signal Processing 9(1-2), 7–21 (1995)CrossRefGoogle Scholar
  28. 28.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)Google Scholar
  29. 29.
    Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theoretical Computer Science 13, 45–60 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Pnueli, A., Zaks, A.: On the Merits of Temporal Testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Prior, A.N.: Past, Present, Future, Oxford (1969)Google Scholar
  32. 32.
    Rescher, N., Urquhart, A.: Temporal Logic. Springer (1971)Google Scholar
  33. 33.
    Vardi, M.Y.: From Philosophical to Industrial Logics. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre Donzé
    • 1
  • Oded Maler
    • 2
  • Ezio Bartocci
    • 4
  • Dejan Nickovic
    • 3
  • Radu Grosu
    • 4
  • Scott Smolka
    • 5
  1. 1.EECS DepartmentUniversity of CaliforniaBerkeleyUSA
  2. 2.VerimagUniversité Joseph Fourier/CNRSGièresFrance
  3. 3.Austrian Institute of TechnologyViennaAustria
  4. 4.Department of Computer EngineeringVienna, University of TechnologyAustria
  5. 5.Department of Computer ScienceStony Brook UniversityUSA

Personalised recommendations