Skip to main content

ALLQBF Solving by Computational Learning

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7561))

Abstract

In the last years, search-based QBF solvers have become essential for many applications in the formal methods domain. The exploitation of their reasoning efficiency has however been restricted to applications in which a “satisfiable/unsatisfiable” answer or one model of an open quantified Boolean formula suffices as an outcome, whereas applications in which a compact representation of all models is required could not be tackled with QBF solvers so far.

In this paper, we describe how computational learning provides a remedy to this problem. Our algorithms employ a search-based QBF solver and learn the set of all models of a given open QBF problem in a CNF (conjunctive normal form), DNF (disjunctive normal form), or CDNF (conjunction of DNFs) representation. We evaluate our approach experimentally using benchmarks from synthesis of finite-state systems from temporal logic and monitor computation.

This work was partly supported by the DFG as part of the AVACS Transregional Collaborative Research Center (SFB/TR 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Rance Cleaveland, W. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Brauer, J., Simon, A.: Inferring Definite Counterexamples through Under-Approximation. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 54–69. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5, 133–191 (2008)

    MathSciNet  Google Scholar 

  6. Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  7. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0, System Description. JSAT 7, 83–88 (2010)

    Google Scholar 

  8. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)

    Google Scholar 

  9. Hellerstein, L., Raghavan, V.: Exact learning of DNF formulas using DNF hypotheses. J. Comput. Syst. Sci. 70, 435–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, 115–125 (1970)

    Google Scholar 

  11. Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Inf. Comput. 123, 146–153 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sloan, R.H., Szörényi, B., Turán, G.: Learning Boolean functions with queries. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press (2010)

    Google Scholar 

  13. Gent, I., Giunchiglia, E., Narizzano, M., Rowley, A., Tacchella, A.: Watched Data Structures for QBF Solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Gent, I.P., Rowley, A.G.D.: Solution Learning and Solution Directed Backjumping Revisited. In: Technical Report APES-80-2004, APES Research Group (2004)

    Google Scholar 

  15. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Marin, P., Giunchiglia, E., Narizzano, M.: Conflict and solution driven constraint learning in QBF. In: Doctoral Program of Constraint Programming Conference 2010, CP 2010 (2010)

    Google Scholar 

  17. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Kupferschmid, S., Lewis, M., Schubert, T., Becker, B.: Incremental preprocessing methods for use in BMC. In: Int’l Workshop on Hardware Verification (2010)

    Google Scholar 

  19. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117, 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. STTT 7, 118–128 (2005)

    Article  Google Scholar 

  23. Biere, A., Heljanko, K., Wieringa, S., Sörensson, N.: 4th hardware model checking competition (HWCC 2011) (Affiliated with FMCAD 2011), http://fmv.jku.at/hwmcc11/

  24. Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becker, B., Ehlers, R., Lewis, M., Marin, P. (2012). ALLQBF Solving by Computational Learning. In: Chakraborty, S., Mukund, M. (eds) Automated Technology for Verification and Analysis. ATVA 2012. Lecture Notes in Computer Science, vol 7561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33386-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33386-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33385-9

  • Online ISBN: 978-3-642-33386-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics