Advertisement

Selective Document Retrieval from Encrypted Database

  • Christoph Bösch
  • Qiang Tang
  • Pieter Hartel
  • Willem Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7483)

Abstract

We propose the concept of selective document retrieval (SDR) from an encrypted database which allows a client to store encrypted data on a third-party server and perform efficient search remotely. We propose a new SDR scheme based on the recent advances in fully homomorphic encryption schemes. The proposed scheme is secure in our security model and can be adapted to support many useful search features, including aggregating search results, supporting conjunctive keyword search queries, advanced keyword search, search with keyword occurrence frequency, and search based on inner product. To evaluate the performance, we implement the search algorithm of our scheme in C. The experiment results show that a search query takes only 47 seconds in an encrypted database with 1000 documents on a Linux server, and it demonstrates that our scheme is much more efficient, i.e., around 1250 times faster, than a solution based on the SSW scheme with similar security guarantees.

Keywords

Searchable Encryption Homomorphic Encryption Privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.-H.: Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes over Encrypted Data. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: FOCS 1995: Proceedings of the 36th Annu. IEEE Symposium on Foundations of Computer Science, pp. 41–50 (1995)Google Scholar
  7. 7.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric Encryption: Improved Definitions and Efficient Constructions. In: CCS 2006: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 79–88. ACM (2006)Google Scholar
  8. 8.
    Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with 0(1) Worst Case Access Time. J. ACM 31(3), 538–544 (1984)zbMATHCrossRefGoogle Scholar
  9. 9.
    Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003)Google Scholar
  12. 12.
    Goldreich, O.: Secure Multi-Party Computation. Working draft (October 2002)Google Scholar
  13. 13.
    Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data in the Database-Service-Provider Model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp. 216–227. ACM (2002)Google Scholar
  16. 16.
    Hart, W.: FLINT: Fast Library for Number Theory, http://www.flintlib.org
  17. 17.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124 (2011)Google Scholar
  18. 18.
    Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Lynn, B.: The Pairing-Based Cryptography library, http://crypto.stanford.edu/pbc
  20. 20.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Micciancio, D., Regev, O.: Lattice-Based Cryptography, pp. 147–191. Springer (2009)Google Scholar
  22. 22.
    Olumofin, F., Goldberg, I.: Revisiting the Computational Practicality of Private Information Retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Ostrovsky, R.: Efficient Computation on Oblivious RAMs. In: Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing, pp. 514–523. ACM (1990)Google Scholar
  24. 24.
    Ostrovsky, R.: Software Protection and Simulations on Oblivious RAMs. PhD thesis. MIT (1992)Google Scholar
  25. 25.
    Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Pappas, V., Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Private Search in the Real World. In: Zakon, R.H., McDermott, J.P., Locasto, M.E. (eds.) Twenty-Seventh Annual Computer Security Applications Conference, ACSAC 2011, pp. 83–92. ACM (2011)Google Scholar
  27. 27.
    Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted Data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Bösch
    • 1
  • Qiang Tang
    • 2
  • Pieter Hartel
    • 1
  • Willem Jonker
    • 1
  1. 1.University of TwenteThe Netherlands
  2. 2.APSIA group, SnTUniversity of LuxembourgLuxembourg

Personalised recommendations