Skip to main content

The Influence of Initial Conditions on Stellar Rotation History

  • Chapter
Studying Stellar Rotation and Convection

Part of the book series: Lecture Notes in Physics ((LNP,volume 865))

Abstract

The question of whether the effects of different initial states persist during the main sequence is important, since it could shed light on the pre-main sequence phase.

In this work we discuss the effects of different initial states on the rotation profile during the main-sequence. We consider both solar-type stars and higher-mass stars. Solar-type stars are fully convective when they start their pre-main sequence evolution. They are braked by magnetic winds during the main sequence, and the effects of the initial conditions is soon forgotten. Lithium abundance, however, is a proxy for the rotation velocity at the ZAMS; it remains different for different initial conditions throughout the main sequence.

Higher-mass stars are not braked by winds, and they do not start their pre-main sequence evolution fully convective. Therefore, the question as to their initial rotation profiles may well be asked. We show that different initial rotation profiles lead to different profiles well into the main sequence. If we want to describe accurately stellar internal rotation, initial conditions need to be carefully considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronov, N., Pinsonneault, M., Sills, A.: Cataclysmic variables: An empirical angular momentum loss prescription from open cluster data. Astrophys. J. 582, 358 (2003)

    Article  ADS  Google Scholar 

  2. Asplund, M., Grevesse, N., Sauval, A.J.: The solar chemical composition. In: Barnes, T.G. III, Bash, F.N. (eds.) Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis. Astronomical Society of the Pacific Conference Series, vol. 336, p. 25 (2005)

    Google Scholar 

  3. Bouvier, J., Forestini, M., Allain, S.: The angular momentum evolution of low-mass stars. Astron. Astrophys. 326, 1023 (1997)

    ADS  Google Scholar 

  4. Chaboyer, B., Zahn, J.P.: Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173 (1992)

    ADS  MATH  Google Scholar 

  5. Charbonnel, C., Talon, S.: Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189 (2005)

    Article  ADS  Google Scholar 

  6. Denissenkov, P.A., Pinsonneault, M., Terndrup, D.M., Newsham, G.: Angular momentum transport in solar-type stars: testing the timescale for core-envelope coupling. Astrophys. J. 716, 1269 (2010)

    Article  ADS  Google Scholar 

  7. Eggenberger, P., Miglio, A., Montalban, J., Moreira, O., Noels, A., Meynet, G., Maeder, A.: Effects of rotation on the evolution and asteroseismic properties of red giants. Astron. Astrophys. 509, A72 (2010)

    Article  ADS  Google Scholar 

  8. Kawaler, S.D.: Angular momentum loss in low-mass stars. Astrophys. J. 333, 236 (1988)

    Article  ADS  Google Scholar 

  9. Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, Berlin (1991)

    Google Scholar 

  10. Krishnamurthi, A., Pinsonneault, M.H., Barnes, S., Sofia, S.: Theoretical models of the angular momentum evolution of solar-type stars. Astrophys. J. 480, 303 (1997)

    Article  ADS  Google Scholar 

  11. Maeder, A., Meynet, G.: Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler–Spruit dynamo. Astron. Astrophys. 422, 225 (2004)

    Article  ADS  Google Scholar 

  12. Maeder, A., Zahn, J.P.: Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron. Astrophys. 334, 1000 (1998)

    ADS  Google Scholar 

  13. Marques, J.P., Goupil, M.J., Lebreton, Y., Talon, S., Palacios, A., Belkacem, K., Ouazzani, R.-M., Mosser, B., Moya, A., Morel, P., Pichon, B., Mathis, S., Zahn, J.-P., Turck-Chièze, S., Nghiem, P.P.: Seismic diagnostics for transport of angular momentum in stars 1. Rotational splittings from the PMS to the RGB. Astron. Astrophys. (2012, in press)

    Google Scholar 

  14. Mathis, S., Zahn, J.P.: Transport and mixing in the radiation zones of rotating stars. II. Axisymmetric magnetic field. Astron. Astrophys. 440, 653 (2005)

    Article  ADS  Google Scholar 

  15. Mathis, S., Palacios, A., Zahn, J.P.: On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243 (2004)

    Article  ADS  Google Scholar 

  16. Meléndez, J., Ramírez, I., Casagrande, L., Asplund, M., Gustafsson, B., Yong, D., Do Nascimento, J.D., Castro, M., Bazot, M.: The solar, exoplanet and cosmological lithium problems. Astrophys. Space Sci. 328, 193 (2010)

    Article  ADS  Google Scholar 

  17. Mestel, L.: Magnetic braking by a stellar wind I. Mon. Not. R. Astron. Soc. 138, 359 (1968)

    ADS  Google Scholar 

  18. Meynet, G., Maeder, A.: Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron. Astrophys. 361, 101 (2000)

    ADS  Google Scholar 

  19. Michaud, G., Proffitt, C.R.: Particle transport processes. In: Weiss, W.W., Baglin, A. (eds.) ASP Conf. Ser. 40: IAU Colloq. 137: Inside the Stars, p. 246 (1993)

    Google Scholar 

  20. Palacios, A., Talon, S., Charbonnel, C., Forestini, M.: Rotational mixing in low-mass stars. I Effect of the mu-gradients in main sequence and subgiant Pop I stars. Astron. Astrophys. 399, 603–616 (2003)

    Article  ADS  Google Scholar 

  21. Palla, F., Stahler, S.W.: The evolution of intermediate-mass protostars. I—Basic results. Astrophys. J. 375, 288 (1991)

    Article  ADS  Google Scholar 

  22. Reiners, A., Mohanty, S.: Radius-dependent angular momentum evolution in low-mass stars. I. Astrophys. J. 746, 43 (2012)

    Article  ADS  Google Scholar 

  23. Richard, D., Zahn, J.: Turbulence in differentially rotating flows. What can be learned from the Couette–Taylor experiment. Astron. Astrophys. 347, 734–738 (1999)

    ADS  Google Scholar 

  24. Roxburgh, I.W.: Stellar winds and spindown in solar type stars. In: Stenflo, J.O. (ed.) Solar and Stellar Magnetic Fields: Origins and Coronal Effects. IAU Symposium, vol. 102, pp. 449–459 (1983)

    Chapter  Google Scholar 

  25. Saar, S.H.: Recent magnetic fields measurements of stellar. Strassmeier, K.G., Linsky, J.L. (eds.) Stellar Surface Structure. IAU Symposium, vol. 176, p. 237 (1996)

    Google Scholar 

  26. Schatzman, E., Zahn, J.P., Morel, P.: Shear turbulence beneath the solar tachocline. Astron. Astrophys. 364, 876 (2000)

    ADS  Google Scholar 

  27. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S.: Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. Astrophys. J. 429, 781 (1994)

    Article  ADS  Google Scholar 

  28. Skumanich, A.: Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565 (1972)

    Article  ADS  Google Scholar 

  29. Stahler, S.W.: The birthline for low-mass stars. Astrophys. J. 274, 822 (1983)

    Article  ADS  Google Scholar 

  30. Strugarek, A., Brun, A.S., Zahn, J.P.: Magnetic confinement of the solar tachocline: II. Coupling to a convection zone. Astron. Astrophys. 532, A34 (2011)

    Article  ADS  Google Scholar 

  31. Talon, S., Charbonnel, C.: Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion. I. Formalism and tests on Pop I dwarfs. Astron. Astrophys. 440, 981 (2005)

    Article  ADS  Google Scholar 

  32. Talon, S., Zahn, J.P.: Anisotropic diffusion and shear instabilities. Astron. Astrophys. 317, 749 (1997)

    ADS  Google Scholar 

  33. Talon, S., Zahn, J.P., Maeder, A., Meynet, G.: Rotational mixing in early-type stars: the main-sequence evolution of a 9 m sun star. Astron. Astrophys. 322, 209 (1997)

    ADS  Google Scholar 

  34. Turck-Chièze, S., Palacios, A., Marques, J.P., Nghiem, P.A.P.: Seismic and dynamical solar models. I. The impact of the solar rotation history on neutrinos and seismic indicators. Astrophys. J. 715, 1539 (2010)

    Article  ADS  Google Scholar 

  35. Zahn, J.P.: Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marques, J.P., Goupil, M.J. (2013). The Influence of Initial Conditions on Stellar Rotation History. In: Goupil, M., Belkacem, K., Neiner, C., Lignières, F., Green, J. (eds) Studying Stellar Rotation and Convection. Lecture Notes in Physics, vol 865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33380-4_4

Download citation

Publish with us

Policies and ethics