Skip to main content

Discontinuous Galerkin for High Performance Computational Fluid Dynamics

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

In this report we present selected simulations performed on the HLRS clusters. Our simulation framework is based on the discontinuous Galerkin method and consists of four different codes, each of which is developed with a distinct focus. All of those codes are written with a special emphasis on (MPI) based high performance computing. Results of compressible flow simulations such as flow past a sphere, compressible jet flow and isotropic homogeneous turbulence as well as an application of our aeroacoustic framework are reported. All simulations are typically performed on hundreds and thousands of CPU cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st Edition, Springer, 2007.

    Google Scholar 

  2. F. Lörcher, Predictor Corrector DG, PhD thesis, University of Stuttgart, (2008).

    Google Scholar 

  3. F. Lörcher and G. Gassner and C.-D. Munz, A Discontinuous Galerkin Scheme based on a Space-Time Expansion I. Inviscid compressible flow in one space dimension, J. Sci. Comp., Vol. 32, pp. 175–199, (2007).

    Article  MATH  Google Scholar 

  4. G. Gassner and F. Lörcher and C.-D. Munz, A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions, J. Sci. Comp., Vol. 34, pp. 260–286, (2007).

    Article  Google Scholar 

  5. G. J. Gassner, Frieder Lörcher, Claus-Dieter Munz and Jan S. Hesthaven: ”Polymorphic nodal elements and their application in discontinuous Galerkin methods”. Journal of Computational Physics, Volume 228, Issue 5, 20 March 2009

    Google Scholar 

  6. F. Lörcher, G. Gassner and C.-D. Munz: ”Arbitrary High Order Accurate Time Integration Schemes for Linear Problems”. European Conference on Computational Fluid Dynamics, ECCOMAS CFD, 2006

    Google Scholar 

  7. G. Gassner and F. Lörcher and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., Vol. 227, pp. 5649–5670, (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gassner and M. Dumbser and F. Hindenlang and C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., In Press, Corrected Proof, (2010).

    Google Scholar 

  9. F. Hindenlang and G. Gassner and T. Bolemann and C.-D. Munz, Unstructured high order grids and their application in Discontinuous Galerkin methods, conference proceedings, V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon,Portugal, (2010).

    Google Scholar 

  10. S. Hickel, Implicit turbulence modeling for large-eddy simulation, PhD thesis, TU Dresden, (2005).

    Google Scholar 

  11. M.E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dynamics Research, Vol. 8, pp. 1–8, (1991).

    Article  Google Scholar 

  12. P.-O. Persson and J. Peraire, Sub-Cell Shock Capturing for Discontinuous Galerkin Methods, Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006).

    Google Scholar 

  13. G. N. Coleman, J. Kim, R. D. Moser, A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech, Vol. 305, pp. 159–183, (1995).

    Article  MATH  Google Scholar 

  14. E. Lenormand, P. Sagaut, L. Ta Phuoc, Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number, Int. J. Numer. Meth. Fluids, Vol. 32, pp. 369–406, (2000).

    Article  MATH  Google Scholar 

  15. A. Birkefeld and C.-D. Munz, A Hybrid Method for CAA, Proc. of the 36. Jahrestagung für Akustik der Deutschen Gesellschaft für Akustik, DAGA, Berlin, (2010).

    Google Scholar 

  16. A. Birkefeld and A. Beck and M. Dumbser and C.-D. Munz and D. König and W. Schröder, Advances in the Computational Aeroacoustics with the Discontinuous Galerkin Solver NoisSol, Proc. of the 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference), Stockholm, 2010

    Google Scholar 

  17. R. Ewert and W. Schröder, Acoustic Perturbation Equations Based on Flow Decomposition via Source Filtering, Journal of Computational Physics, Vol. 188, pp. 365–398, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. Jan W.  Delfs and Marcus Bauer and Roland Ewert and Herwig A. and Grogger and Markus Lummer and Thomas G. W. Lauke, Numerical Simulation of Aerodynamic Noise with DLR’s aeroacoustic code PIANO, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Aerodynamik und Strömungstechnik

    Google Scholar 

  19. R. Ewert, Broadband slat noise prediction based on CAA and stochasic sound sources from a fast random particle mesh RPM) method, Computers & Fluids, Vol. 37, pp. 369387, 2008

    Article  MathSciNet  Google Scholar 

  20. S. Orszag, Numerical simulation of the Taylor-Green vortex, Computing Methods in Applied Sciences and Engineering Part 2, Lecture Notes in Computer Science, Vol. 11, pp. 50–64, (1974).

    Article  MathSciNet  Google Scholar 

  21. D. Fauconnier, Development of a Dynamic Finite Difference Method for Large-Eddy Simulation, PhD thesis, University of Gent, Belgium, (2009).

    Google Scholar 

  22. A. Beck, G. Gassner, I. Horenko, R. Klein, C.-D. Munz, Technischer Report im Rahmen des Schwerpunktprogramms 1276 (MetStroem), Lugano, Berlin, Stuttgart, (2011).

    Google Scholar 

  23. A.G. Tomboulides and S.A. Orszag, Numerical investigation of transitional and weak turbulent flow past a sphere, J. Fluid Mech., Vol. 416, pp. 45–73, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. Bogey, C., Bailly, C. and Juv, D., Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES,Theoretical and Computational Fluid Dynamics,16(4), 273–29, 2003.

    Google Scholar 

  25. J. Dierke, C. Appel, J. Siebert, M. Bauer, M. Siefert and R. Ewert, 3D Computation of Broadband Slat Noise from Swept and Unswept High-Lift Wing Sections, Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference, Portland, AIAA paper 2011–2905 (2011).

    Google Scholar 

  26. D. P. Lockard and M. M. Choudhari, Noise Radiation from a Leading-Edge Slat, AIAA paper 2009–3101 (2009).

    Google Scholar 

  27. G.J. Gassner and A.D.Beck, On the accuracy of high-order discretizations for underresolved turbulence simulations, Theoretical and Computational Fluid Dynamics, DOI 10.1007/s00162-011-0253-7

    Google Scholar 

Download references

Acknowledgements

The research presented in this paper was supported in parts by Deutsche Forschungsgemeinschaft (DFG), amongst others within the Schwerpunktprogramm 1276: MetStroem and the Graduiertenkolleg 1095: Aerothermodynamische Auslegung eines Scramjet-Antriebssystems für zukünftige Raumtransportsysteme and the research projects IDIHOM within the European Research Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Altmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altmann, C. et al. (2013). Discontinuous Galerkin for High Performance Computational Fluid Dynamics. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_18

Download citation

Publish with us

Policies and ethics