Skip to main content

Energy Packet Networks: ICT Based Energy Allocation and Storage

(Invited Paper)

  • Conference paper
Green Communications and Networking (GreeNets 2011)

Abstract

In the presence of limitations in the availability of energy for data centres, especially in dense urban areas, a novel system that we call an Energy Packet Network is discussed as a means to provide energy on demand to Cloud Computing servers. This approach can be useful in the presence of renewable energy sources, and if scarce sources of energy must be shared by multiple computational units whose peak to average power consumption ratio is high. Such a system will use energy storage units to best match and smooth the intermittent supply and the intermittent demand. The analysis of such systems based on queueing networks is suggested and applied to a special case for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunn, D.W., Farmer, E. (eds.): Comparative Models for Electric Load Forecasting. John Wiley & Sons (1985)

    Google Scholar 

  2. Gelenbe, E., Stafylopatis, A.: Global behaviour of homogeneous random neural systems. Applied Mathematical Modelling 15(10), 534–541 (1991)

    Article  MATH  Google Scholar 

  3. Atalay, V., Gelenbe, E.: Parallel algorithm for colour texture generation using the random neural network model. IJPRAI 6(2&3), 437–446 (1992)

    Google Scholar 

  4. Gelenbe, E.: The first decade of G-networks. European Journal of Operational Research 126(2), 231–232 (2000)

    Article  MATH  Google Scholar 

  5. Ramanathan, R., Engle, R., Granger, C.W., Vahid-Araghi, F., Brace, C.: Short-run forecasts of electricity loads and peaks. International Journal of Forecasting 13(2), 161–174 (1997)

    Article  Google Scholar 

  6. Gelenbe, E., Labed, A.: G-networks with multiple classes of signals and positive customers. European Journal of Operations Research 108(2), 293–305 (1998)

    Article  MATH  Google Scholar 

  7. Winkler, G., Meisenbach, C., Hable, M., Meier, P.: Intelligent energy management of electrical power systems with distributed feeding on the basis of forecasts of demand and generation. In: ClRED 2001 (2001)

    Google Scholar 

  8. Zack, D.J.: Overview of wind energy generation forecasting. Tech. Rep. TrueWind Solutions, LLC (2003)

    Google Scholar 

  9. Gelenbe, E., Fourneau, J.-M.: G-Networks with resets. Performance Evaluation 49, 179–192 (2002)

    Article  MATH  Google Scholar 

  10. Gelenbe, E.: Cognitive Packet Network. U.S. Patent No. 6804201 B1 (October 12, 2004)

    Google Scholar 

  11. Taylor, J.W.: Density forecasting for the efficient balancing of the generation and consumption of electricity. International Journal of Forecasting 22(4), 707–724 (2006)

    Article  Google Scholar 

  12. Gelenbe, E., Loukas, G.: A self-aware approach to denial of service defence. Computer Networks 51(5), 1299–1314 (2007)

    Article  MATH  Google Scholar 

  13. Cancelo, J.R., Espasa, A., Graffe, R.: Forecasting the electricity load from one day to one week ahead for the spanish system operator. International Journal of Forecasting 24(2), 588–602

    Google Scholar 

  14. Black, M., Strbac, G.: Value of bulk energy storage for managing wind power fluctuations. IEEE Transactions on Energy Conversion 22(1), 197–205 (2007)

    Article  Google Scholar 

  15. Infield, D., Short, J., Home, C., Freris, L.: Potential for domestic dynamic demand-side management in the UK. In: IEEE Power Engineering Society General Meeting, pp. 1–6 (June 2007)

    Google Scholar 

  16. Dordonnat, V., Koopman, S., Ooms, M., Dessertaine, A., Collet, J.: An hourly periodic state space model for modelling French national electricity load. International Journal of Forecasting 24(4), 566–587 (2008)

    Article  Google Scholar 

  17. Sanchez, I.: Adaptive combination of forecasts with application to wind energy. International Journal of Forecasting 24(4), 679–693 (2008)

    Article  Google Scholar 

  18. Manwell, J., McGowan, J., Rogers, A.: Wind Energy Explained: Theory, Design and Application. Wiley (2009)

    Google Scholar 

  19. Gelenbe, E.: Steps toward self-aware networks. Comm. ACM 52(7), 66–75 (2009)

    Article  Google Scholar 

  20. Berl, A., Gelenbe, E., di Girolamo, M., Giuliani, G., de Meer, H., Dang, M.-Q., Pentikousis, K.: Energy- efficient Cloud Computing. The Computer Journal 53(7), 1045–1051 (2010), doi:10.1093/comjnl/bxp080

    Google Scholar 

  21. Sakellari, G., Gelenbe, E.: Demonstrating cognitive packet network resilience to worm attacks. In: Proc. ACM Conference on Computer and Communications Security, pp. 636–638 (2010)

    Google Scholar 

  22. The MeRegio Project, http://www.meregio.de/en/ (2011), Center for Renewable Energy Sources, http://www.cres.gr/

  23. Berthold, H., Boehm, M., Dannecker, L., Rumph, F.-J., Pedersen, T.B., Nychtis, C., Frey, H., Marinsek, Z., Filipic, B., Tselepis, S.: Exploiting renewables by request– based balancing of energy demand and supply. In: Proc. 11th IAEE European Conference (2010)

    Google Scholar 

  24. MIRACLE Project 2010. MIRACLE Project Website. MIRACLE Project (2010), http://www.miracle--project.eu

  25. Nationalgrid UK 2010. Metered half-hourly electricity demands. Nationalgrid UK (2010), http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/

  26. NREL 2010. Wind Integration Datasets. NREL (2010), http://www.nrel.gov/wind/integrationdatasets/

  27. Gelenbe, E., Morfopoulou, C.: Routing and G-Networks to Optimise Energy and Quality of Service in Packet Networks. In: Hatziargyriou, N., Dimeas, A., Tomtsi, T., Weidlich, A. (eds.) E-Energy 2010. LNICST, vol. 54, pp. 163–173. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Gelenbe, E., Mahmoodi, T.: Energy-Aware Routing Protocol in the Cognitive Packet Network. In: International Conference on Smart Grids, Green Communications, and IT Energy–aware Technologies (Energy 2011), Venice, Italy, May 22-27 (2011) ISBN: 978–1–61208–006–2

    Google Scholar 

  29. Gelenbe, E., Morfopoulou, C.: A framework for energy aware routing in packet networks. The Computer Journal 54(6), 850–859 (2011)

    Article  Google Scholar 

  30. Dinorwig power station. First Hydro Company, http://www.fhc.co.uk/dinorwig.html

  31. Bitar, E., Rajagopal, R., Khargonekar, P., Poolla, K.: The role of co-located storage for wind power producers in conventional electricity markets. In: Proc. American Control Conference (ACC), pp. 3886–3891 (July 2011)

    Google Scholar 

  32. Chandy, K., Low, S., Topcu, U., Xu, H.: A simple optimal power flow model with energy storage. In: 49th IEEE Conference on Decision and Control (CDC), pp. 1051–1057 (December 2010)

    Google Scholar 

  33. Gayme, D., Topcu, U.: Optimal power flow with distributed energy storage dynamics. In: Proc. American Control Conference (2011)

    Google Scholar 

  34. Grünewald, P., Cockerill, T., Contestabile, M., Pearson, P.: The role of large scale storage in a GB low carbon energy future: Issues and policy challenges. Energy Policy 39(9), 4807–4815 (2011)

    Article  Google Scholar 

  35. Gelenbe, E.: Energy Packet Networks: Smart Electricity Storage to Meet Surges in Demand, Keynote Talk. In: SimuTools 2012, Desenzano, Italy (April 2012)

    Google Scholar 

  36. Naish, C., McCubbin, I., Edberg, O., Harfoot, M.: Outlook of energy storage technologies. Technical Report

    Google Scholar 

  37. Oh, H.: Optimal planning to Include Storage Devices in Power Systems. IEEE Transactions on Power Systems 26(3), 1118–1128 (2011)

    Article  Google Scholar 

  38. Sinden, G.: Characteristics of the UK wind resource: long– term patterns and relationship to electricity demand. Energy Policy 35(1), 112–127 (2007)

    Article  Google Scholar 

  39. Su, H.-I., Gamal, A.E.: Modeling and analysis of the role of fast-response energy storage in the smart grid. In: Proceedings of the Forty-Ninth Annual Allerton Conference on Communication, Control, and Computing. University of Illinois at Urbana-Champaign (September 2011)

    Google Scholar 

  40. Su, H.-I., Gamal, A.E.: Modeling and analysis of the role of fast– response energy storage in the smart grid. CoRR, abs/1109.3841 (2011)

    Google Scholar 

  41. Financial Times, p. 2 (August 29, 2011)

    Google Scholar 

  42. Wade, N., Taylor, P., Lang, P., Jones, P.: Evaluating the benefits of an electrical energy storage system in a future smart grid. Energy Policy 38(11), 7180–7188 (2010)

    Article  Google Scholar 

  43. Gelenbe, E.: Energy Packet Networks: Smart energy storage to meet surges in demand. In: Proc. 5th International ICST Conference on Simulation Tools and Techniques, Simutools 2012, Desenzano, Italy, March 19-23 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gelenbe, E. (2012). Energy Packet Networks: ICT Based Energy Allocation and Storage. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds) Green Communications and Networking. GreeNets 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33368-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33368-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33367-5

  • Online ISBN: 978-3-642-33368-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics