Skip to main content

Synchronization in Complex Networks: Properties and Tools

  • Chapter
  • First Online:
Consensus and Synchronization in Complex Networks

Part of the book series: Understanding Complex Systems ((UCS))

  • 2037 Accesses

Abstract

In this chapter, the subject of synchronization is introduced and discussed considering the effects due to network topology. The chapter is organized as follows: (a) after a brief recap of a method due to Pecora and Carroll for checking the conditions for identical synchronization, several of the most popular topologies are considered, showing their influence on network synchronizability; (b) a technique, useful to find out the onset of synchronization in network of periodic oscillators is described in detail; (c) some simulation examples are given; (d) the case of synchronization in networks of nearly identical oscillators is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Google Scholar 

  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Google Scholar 

  3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Google Scholar 

  4. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  6. Singer, W., Gray, C.M.: Visual features integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 18, 555–586 (1995)

    Google Scholar 

  7. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Ch. 10. MIT, Cambridge (2007)

    Google Scholar 

  8. Roelfsema, P.R., Engel, A.K., Konig, P., Singer, W.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997)

    Google Scholar 

  9. Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., Varela, F.J.: Perception‘s shadow: Long distance synchronization of human brain activity. Nature 397, 430–433 (1999)

    Google Scholar 

  10. Tabareau, N., Slotine, J.-J., Pham, Q.-C.: How synchronization protects from noise. PLoS Comput. Biol. 6(1), e1000637 (2010)

    Google Scholar 

  11. Checco, P., Biey, M., Kocarev, L.: Synchronization in random networks with given expected degree sequences. Chaos Solitons Fractals 35, 562–577 (2008)

    Google Scholar 

  12. Mishkovski, I., Righero, M., Biey, M., Kocarev, L.: Enhancing robustness and synchronizability of networks homogenizing their degree distribution. Physica A 390, 4610-4620 (2011)

    Google Scholar 

  13. Righero, M., Corinto, F., Biey, M.: A frequency-domain-based master stability function for synchronization in nonlinear periodic oscillators. Int. J. Circ. Theor. Appl., doi: 10.1002/cta.807 (2011)

    Google Scholar 

  14. Pecora, L., Carroll, T.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Google Scholar 

  15. Fink, K.S., Johnson, G., Carroll, T., Mar, D., Pecora, L.: Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays. Phys. Rev. E 61(5), 5080–5090 (2000)

    Google Scholar 

  16. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054101 (1–4) (2002)

    Google Scholar 

  17. Checco, P., Kocarev, L., Maggio, G.M., Biey, M.: On the Synchronization Region in Networks of Coupled Oscillators, vol. IV, pp. 800–803. Proc. of IEEE Int. Symp. on Circuits and Systems, (2004)

    Google Scholar 

  18. Stojanovski, T., Kocarev, L., Parlitz, U., Harris, R.: Sporadic driving of dynamical systems. Phys. Rev. E 55, 4035–4048 (1997)

    Google Scholar 

  19. Huang, L., Chen, Q., Lai, Y.-C., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (1–10) (2009)

    Google Scholar 

  20. Madan, R.N.: Chua’s Circuit: A Paradigm for Chaos. World Scientic, Singapore (1993)

    Google Scholar 

  21. Erdős, P., Rényi, A.: On random graphs. Publ. Math Debrecen 6, 290–291 (1959)

    Google Scholar 

  22. Bollobás, B.: Graph Theory: An Introductory Course. Springer, New York (1979)

    Google Scholar 

  23. Juvan, M., Mohar, B.: Laplace eigenvalues and bandwidth-type invariants of graphs. J. Graph Theory 17, 393–407 (1993)

    Google Scholar 

  24. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Combinat. 6, 125–145 (2001)

    Google Scholar 

  25. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. Proceedings of the Thirty–Second Annual ACM Symposium on Theory of Computing, ACM, pp. 171–180 (2000)

    Google Scholar 

  26. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(98), 298–305 (1973)

    Google Scholar 

  27. Bollobás, B.: The isoperimetric number of random regular graphs. Eur. J. Combinat. 9, 241–244 (1988)

    Google Scholar 

  28. Mohar, B.: Isoperimetric numbers of graphs. J. Combinat. Theory Ser. B 47, 274–291 (1989)

    Google Scholar 

  29. Wu, C.W.: Synchronization in arrays of coupled nonlinear systems: Passivity, circle criterion, and observer design. IEEE Trans. Circ. Syst. I 48, 1257–1261 (2001)

    Google Scholar 

  30. Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks, pp. 91–106. Springer, Berlin (2004)

    Google Scholar 

  31. Donetti, L., Hurtado, P.I., Munoz, M.A.: Entangled networks, synchronization and optimal network topology. Phys. Rev. Lett. 95, 188701-4 (2005)

    Google Scholar 

  32. Rad, A.A., Jalili, M., Hasler, M.: Efficient rewirings for enhancing synchronizability of dynamical networks. CHAOS: Interdiscipl. J. Nonlinear Sci. 18(3), 37104 (2008)

    Google Scholar 

  33. Jalili, M., Rad, A.A.: Comment on rewiring networks for synchronization. CHAOS: Interdiscipl. J. Nonlinear Sci. 19(2) (2009)

    Google Scholar 

  34. Mishkovski, I., Righero, M., Biey, M., Kocarev, L.: Building synchronizable and robust networks. Proc. of IEEE Int. Symp. on Circuits and Systems, 681–684 (2010)

    Google Scholar 

  35. Wang, B., Tang, H.-W., Xiu, Z.-L., Guo, C.-H., Zhou, T.: Optimization of network structure to random failures. Physica A 368(2), 607–614 (2006)

    Google Scholar 

  36. Gorochowski, T.E., di Bernardo, M., Grierson, C.S.: Evolving enhanced topologies for the synchronization of dynamical complex networks. Phys. Rev. Lett. E 81(5), 056212 (2010)

    Google Scholar 

  37. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circ. Syst. I 33(11), 1073–1118 (1986)

    Google Scholar 

  38. Demir, A.: Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations. Int. J. Circ. Theory Appl. 28(2), 163–185 (2000)

    Google Scholar 

  39. Traversa, F.L., Bonani, F., Donati Guerrieri, S.: A frequency-domain approach to the analysis of stability and bifurcation in nonlinear systems described by differential-algebraic equations. Int. J. Circ. Theor. Appl. 36, 421–439 (2008)

    Google Scholar 

  40. Brambilla, A., Storti Gajani, G.: Computation of all the Floquet eigenfunctions in autonomous circuits. Int. J. Circ. Theory Appl. 36(5–6), 717–737 (2008)

    Google Scholar 

  41. Gilli, M., Corinto, F., Checco, P.: Periodic oscillations and bifurcations in cellular nonlinear networks. IEEE Trans. Circ. Syst. I, 51(5), 948–962 (2004)

    Google Scholar 

  42. Corinto, F., Lanza, V., Gilli, M.: Spiral waves in bio-inspired oscillatory dissipative media. Int. J. Circ. Theory Appl. 36(5–6), 555–571 (2008)

    Google Scholar 

  43. Chicone, C.: Ordinary Differential Equations with Applications, vol. 34. Springer, New York (1999)

    Google Scholar 

  44. Liang Huang, Y.-C.L., Chen, Q., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80(036204) (2009)

    Google Scholar 

  45. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Google Scholar 

  46. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Google Scholar 

  47. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theoret. Phys. 83(5), 875–893 (1990)

    Google Scholar 

  48. Genesio, R., Tesi, A., Villoresi, F.: A frequency approach for analyzing and controlling chaos in nonlinear circuits. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 40(11), 819 –828 (1993)

    Google Scholar 

  49. Farkas, M.: Periodic Motions. Springer, New York (1994)

    Google Scholar 

  50. Sorrentino, F., Ott, E.: Adaptive synchronization of dynamics on evolving complex networks. Phys. Rev. Lett. 11(100) (2008)

    Google Scholar 

  51. Porfiri, M., Stilwell, D.J., Bollt, E.M.: Synchronization in random weighted directed networks. IEEE TCAS-I 55(10), 3170–3177 (2008)

    Google Scholar 

  52. Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3, 37–44 (2006)

    Google Scholar 

  53. Osipov, G.V., Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Phase synchronization effects in a lattice of nonidentical rössler oscillators. Phys. Rev. E 55(3), 2353–2361 (1997)

    Google Scholar 

  54. Restrepo, J.G., Ott, E., Hunt, B.R.: Spatial patterns of desynchronization bursts in networks. Phys. Rev. E 69 (2004)

    Google Scholar 

  55. Sorrentino, F., Porfiri, M.: Analysis of parameter mismatches in the master stability function for network synchronization. EPL 93 (2011)

    Google Scholar 

  56. Sun, J., Bollt, E.M., Nishikawa, T.: Master stability functions for coupled nearly identical dynamical systems. EPL 85 (2009)

    Google Scholar 

  57. de Magistris, M., di Bernardo, M., Di Tucci, E., Manfredi, S.: Synchronization of networks of non-identical Chua circuits: analysis and experiments, Proc. of IEEE Int. Symp. on Circuits and Systems, 741–744 (2011)

    Google Scholar 

  58. Mishkovski, I., Mirchev, M., Corinto, F., Biey, M.: Synchronization analysis of networks of identical and nearly identical Chuas oscillators, Proc. of IEEE Int. Symp. on Circuits and Systems, 2115–2118 (2012)

    Google Scholar 

  59. Cruz, J.M., Chua, L.O.: An IC chip of Chua’s circuit. IEEE TCAS-II: Analog Digital Signal Process. 40(10), 614–625 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Istituto Superiore Mario Boella, Turin, Italy, and by CRT Foundation under project 2010.1643.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Biey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biey, M., Corinto, F., Mishkovski, I., Righero, M. (2013). Synchronization in Complex Networks: Properties and Tools. In: Kocarev, L. (eds) Consensus and Synchronization in Complex Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33359-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33359-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33358-3

  • Online ISBN: 978-3-642-33359-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics