Distributed Consensus and Coordination Control of Networked Multi-agent Systems

  • Fan Yan
  • Guanrong Chen
Part of the Understanding Complex Systems book series (UCS)


Cooperative collective behaviors in networks of autonomous agents, such as synchronization, consensus, swarming, and particularly flocking, have received considerable attention in recent years, with many significant results established. This chapter briefly reviews part of distributed coordination control of general mobile multi-agent systems, including consensus, formation control, and distributed estimation-control of networked multi-agent systems. To that end, some important and promising future research issues are listed and briefly discussed.


  1. 1.
    Ajorlou, A., Momeni, A., Aghdam, A.G.: A class of bounded distributed control strategies for connectivity preservation in multi-agent systems. IEEE Trans. Auto. Contr. 55(12), 2828–2833 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akar, M., Shorten, R.: Distributed probabilistic synchronization algorithms for communication networks. IEEE Trans. Auto. Contr. 53(1), 389–393 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Angeli, D., Bliman, P.A.: Convergence speed of unsteady distributed consensus: Decay estimate along the settling spanning-trees. SIAM J. Contr. Optim. 48(1), 1–32 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 468(3), 93–153 (2008)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Bai, H., Arcak, M., Wen, J.: Cooperative Control Design: A Systematic, Passivity-Based Approach. Springer, Berlin (2011)MATHCrossRefGoogle Scholar
  6. 6.
    Barnes, L.E., Fields, M.A., Valavanis, K.P.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. Syst. Man Cybernet. B 39(6), 1434–1445 (2009)CrossRefGoogle Scholar
  7. 7.
    Bliman, P.A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications. Automatica 44(8), 1985–1995 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bullo, F., Cortes, J., Martnez, S.: Distributed Control of Robotic Networks. Princeton University Press, Princeton (2009)MATHGoogle Scholar
  9. 9.
    Cao, J., Chen, G., Li, P.: Global synchronization in an array of delayed neural networks with hybrid coupling. IEEE Trans. Syst. Man. Cybernet. B 38(2), 488–498 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cao, Y., Ren, W.: Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. Int. J. Robust Nonlinear Contr. 20, 987–1000 (2010)MathSciNetGoogle Scholar
  11. 11.
    Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Auto. Contr. 57(1), 33–48 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cao, Y., Ren, W., Li, Y.: Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. Automatica 45(5), 1299–1305 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Contr. Lett. 59(9), 522–529 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Carli, R., Bullo, F.: Quantized coordination algorithms for rendezvous and deployment. SIAM J. Contr. Optim. 48(3), 1251–1274 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen, G., Lewis, F.L.: Distributed adaptive tracking control for synchronization of unknown networked lagrangian systems. IEEE Trans. Syst. Man Cybernet. B 41(3), 805–816 (2011)CrossRefGoogle Scholar
  16. 16.
    Choi, J., Oh, S., Horowitz, R.: Distributed learning and cooperative control for multi-agent systems. Automatica 45(12), 2802–2814 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Chopra, N., Spong, M.W.: On exponential synchronization of kuramoto oscillators. IEEE Trans. Auto. Contr. 54(2), 353–357 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chung, S.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Trans. Robot. 25(3), 686–700 (2009)CrossRefGoogle Scholar
  20. 20.
    Cortés, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(11), 1993–2000 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE Trans. Auto. Contr. 56(5), 1124–1129 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Auto. Contr. 52(5), 852–862 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Das, A., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 46(12), 2014–2021 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    DeGroot, M.H.: Reaching a consensus. J. Am. Statist. Assoc. 69(345), 118–121 (1974)MATHCrossRefGoogle Scholar
  25. 25.
    DeLellis, P., di Bernardo, M., Garofalo, F.: Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica 45(5), 1312–1318 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dimarogonas, D.V., Johansson, K.H.: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control. Automatica 46(4), 695–700 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10), 648–2654 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: Inverse agreement protocols with application to distributed multi-agent dispersion. IEEE Trans. Auto. Contr. 54(3), 657–663 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Estrada, E., Gago, S., Caporossi, G.: Design of highly synchronizable and robust networks. Automatica 46(11), 1835–1842 (2010)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Auto. Contr. 49(9), 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Auto. Contr. 56(5), 1226–1231 (2011)CrossRefGoogle Scholar
  32. 32.
    Gao, Y., Wang, L., Xie, G., Wu, B.: Consensus of multi-agent systems based on sampled-data control. Int. J. Contr. 82(12), 2193–2205 (2009)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Gustavi, T., Dimarogonas, D.V., Egerstedt, M., Hu, X.: Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks. Automatica 46(1), 133–139 (2010)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. Auto. Contr. 50(11), 1867–1872 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46(8), 1382–1387 (2010)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Huang, M., Dey, S., Nair, G.N., Manton, J.H.: Stochastic consensus over noisy networks with markovian and arbitrary switches. Automatica 46(10), 1571–1583 (2010)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Huang, M., Manton, J.H.: Stochastic consensus seeking with noisy and directed inter-agent communication: Fixed and randomly varying topologies. IEEE Trans. Auto. Contr. 55(1), 235–241 (2010)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Hui, Q., Haddad, W.M.: Distributed nonlinear control algorithms for network consensus. Automatica 44(9), 2375–2381 (2008)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Auto. Contr. 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43(7), 1192–1203 (2007)MathSciNetMATHGoogle Scholar
  41. 41.
    Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph laplacian. IEEE Trans. Auto. Contr. 51(1), 116–120 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Lee, D.J., Spong, M.W.: Agreement with non-uniform information delays. In: Proceedings of the American Control Conference, pp. 756–761, Minneapolis (2006)Google Scholar
  43. 43.
    Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M., Davis, R.E.: Collective motion, sensor networks, and ocean sampling. Proc. IEEE 95(1), 48–74 (2007)CrossRefGoogle Scholar
  44. 44.
    Lin, P., Jia, Y.M.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A 387(1), 303–313 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    Lin, P., Jia, Y.: Distributed rotating formation control of multi-agent systems. Syst. Contr. Lett. 59(10), 587–595 (2010)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Lin, P., Jia, Y.: Multi-agent consensus with diverse time-delays and jointly-connected topologies. Automatica 47(4), 848–856 (2011)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Lin, P., Jia, Y., Li, L.: Distributed robust h1 consensus control in directed networks of agents with time-delay. Syst. Contr. Lett. 57(8), 643–653 (2008)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Li, Q., Jiang, Z.P.: Global analysis of multi-agent systems based on vicsek’s model. IEEE Trans. Auto. Contr. 54(12), 2876–2881 (2009)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Li, T., Zhang, J.F.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45(8), 1929–1936 (2009)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Li, T., Fu, M., Xie, L., Zhang, J.F.: Distributed consensus with limited communication data rate. IEEE Trans. Auto. Contr. 56(2), 279–292 (2011)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Li, Z., Duan, Z., Chen, G.: On h1 and h2 performance regions of multi-agent systems. Automatica 47(4), 797–803 (2011)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Trans. Circ. Syst. I 57(1), 213–224 (2010)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Lin, P., Qin, K., Li, Z., Ren, W.: Collective rotating motions of second-order multi-agent systems in three-dimensional space. Syst. Contr. Lett. 60(6), 365–372 (2011)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Lin, Z., Francis, B., Maggiore, M.: State agreement for continuous-time coupled nonlinear systems. SIAM J. Contr. Optim. 46(1), 288–307 (2007)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: An h1 analysis approach. Int. J. Robust Nonlinear Contr. 20(14), 1579–1593 (2010)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Liu, X., Lu, W., Chen, T.: Consensus of multi-agent systems with unbounded time-varying delays. IEEE Trans. Auto. Contr. 55(10), 2396–2401 (2010)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Liu, H., Xie, G., Wang, L.: Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control. Int. J. Robust Nonlinear Contr. 20(15), 1706–1722 (2010)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Lu, J., Ho, D.W.C.: Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Trans. Syst. Man Cybernet. B 40(2), 350–361 (2010)CrossRefGoogle Scholar
  59. 59.
    Lu, J., Ho, D.W., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Lu, J.Q., Ho, D.W.C., Kurths, J.: Consensus over directed static networks with arbitrary finite communication delays. Phys. Rev. E 80(066121) (2009)Google Scholar
  61. 61.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Los Altos (1996)MATHGoogle Scholar
  62. 62.
    Lynch, K.M., Schwartz, I.B., Yang, P., Freeman, R.A.: Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Robot. 24(3), 710–724 (2008)CrossRefGoogle Scholar
  63. 63.
    Menon, P.P., Edwards, C.: Decentralised static output feedback stabilisation and synchronisation of networks. Automatica 45(12), 2910–2916 (2009)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods for Multiagent Networks. Princeton University Press, Princeton (2010)Google Scholar
  65. 65.
    Moreau, L.: Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Auto. Contr. 50(2), 169–182 (2005)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Munz, U., Papachristodoulou, A., Allgower, F.: Delay robustness in consensus problems. Automatica 46(8), 1252–1265 (2010)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Murray, R.M.: Recent research in cooperative control of multivehicle systems. ASME J. Dynam. Syst. Measur. Contr. 129(5), 571–583 (2007)CrossRefGoogle Scholar
  68. 68.
    Nair, S., Leonard, N.E.: Stable synchronization of mechanical system networks. SIAM J. Contr. Optim. 47(2), 661–683 (2008)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Nedic, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: On distributed averaging algorithms and quantization effects. IEEE Trans. Auto. Contr. 54(11), 2506–2517 (2009)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Contr. Lett. 59(3–4), 209–217 (2010)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Nuno, E., Ortega, R., Basanez, L., Hill, D.: Synchronization of networks of nonidentical euler-lagrange systems with uncertain parameters and communication delays. IEEE Trans. Auto. Contr. 56(4), 935–941 (2011)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Auto. Contr. 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  74. 74.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Auto. Contr. 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Contr. Optim. 48(1), 33–55 (2009)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Papachristodoulou, A., Jadbabaie, A., Munz, U.: Effects of delay in multi-agent consensus and oscillator synchronization. IEEE Trans. Auto. Contr. 55(6), 1471–1477 (2010)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Park, J., Kim, H.J., Ha, S.Y.: Cucker-smale flocking with inter-particle bonding forces. IEEE Trans. Auto. Contr. 55(11), 2617–2623 (2010)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Pavone, M., Frazzoli, E.: Decentralized policies for geometric pattern formation and path coverage. ASME J. Dynam. Syst. Measure. Contr. 129, 633–643 (2007)CrossRefGoogle Scholar
  79. 79.
    Porfiri, M., Roberson, D.G., Stilwell, D.J.: Tracking and formation control of multiple autonomous agents: A two-level consensus approach. Automatica 43(8), 1318–1328 (2007)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Porfiri, M., Stilwell, D.J.: Consensus seeking over random weighted directed graphs. IEEE Trans. Auto. Contr. 52(9), 1767–1773 (2007)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Powel, N.D., Morgansen, K.A.: Communication-based performance bounds in nonlinear coordinated control. Int. J. Robust Nonlinear Contr. 21(12), 1410–1420 (2011)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Qu, Z.: Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. Springer, Berlin (2009)MATHGoogle Scholar
  83. 83.
    Qu, Z., Wang, J., Hull, R.A.: Cooperative control of dynamical systems with application to autonomous vehicles. IEEE Trans. Auto. Contr. 53(4), 894–911 (2008)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Contr. Lett. 56(7), 474–483 (2007)MATHCrossRefGoogle Scholar
  85. 85.
    Ren, W.: Collective motion from consensus with cartesian coordinate coupling. IEEE Trans. Auto. Contr. 54(6), 1330–1336 (2009a)CrossRefGoogle Scholar
  86. 86.
    Ren, W.: Distributed leaderless consensus algorithms for networked euler-lagrange systems. Int. J. Contr. 82(11), 2137–2149 (2009b)MATHCrossRefGoogle Scholar
  87. 87.
    Ren, W.: Consensus tracking under directed interaction topologies: Algorithms and experiments. IEEE Trans. Contr. Syst. Tech. 18(1), 230–237 (2010)CrossRefGoogle Scholar
  88. 88.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Auto. Contr. 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Springer, Berlin (2008)MATHGoogle Scholar
  90. 90.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control: Collective group behavior through local interaction. IEEE Contr. Syst. Mag. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  91. 91.
    Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer, Berlin (2011)MATHCrossRefGoogle Scholar
  92. 92.
    Scardovi, L., Arcak, M., Sontag, E.D.: Synchronization of interconnected systems with applications to biochemical networks: An input-output approach. IEEE Trans. Auto. Contr. 55(6), 1367–1379 (2010)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45(11), 2557–2562 (2009)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Seo, J.H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 45(11), 2659–2664 (2009)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: All-to-all communication. IEEE Trans. Auto. Contr. 52(5), 811–824 (2008)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45(5), 1165–1175 (2009)MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Shi, H., Wang, L., Chu, T.: Flocking of multi-agent systems with a dynamic virtual leader. Int. J. Contr. 82(1), 43–58 (2009)MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Shi, L., Epstein, M., Murray, R.M.: Kalman filtering over a packet-dropping network: A probabilistic perspective. IEEE Trans. Auto. Contr. 55(3), 594–604 (2010)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Smith, R.S., Hadaegh, F.Y.: Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication. IEEE Trans. Auto. Contr. 52(8), 1404–1414 (2007)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst. Contr. Lett. 59(9), 553–562 (2010)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Song, Q., Chen, G., Ho, D.W.C.: On the equivalence and condition of different consensus over a random network generated by i.i.d. stochastic matrices. IEEE Trans. Auto. Contr. 56(5), 1203–1207 (2011)Google Scholar
  102. 102.
    Stan, G.B., Sepulchre, R.: Analysis of interconnected oscillators by dissipativity theory. IEEE Trans. Auto. Contr. 52(2), 256–270 (2007)MathSciNetCrossRefGoogle Scholar
  103. 103.
    Su, H., Chen, G., Wang, X., Lin, Z.: Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica 47(2), 368–375 (2011)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Su, H., Wang, X., Chen, G.: A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements. Int. J. Contr. 82(7), 1334–1343 (2009)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Su, H., Wang, X., Chen, G.: Rendezvous of multiple mobile agents with preserved network connectivity. Syst. Contr. Lett. 59(5), 313–322 (2010)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Auto. Contr. 54(2), 293–307 (2009a)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Su, H., Wang, X., Lin, Z.: Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica 45(10), 2286–2291 (2009b)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Sun, Y.G., Wang, L., Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Syst. Contr. Lett. 57(2), 175–183 (2008)MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Sun, Z., Huang, J.: A note on connectivity of multi-agent systems with proximity graphs and linear feedback protocolGoogle Scholar
  110. 110.
    Tahbaz-Salehi, A., Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks. IEEE Trans. Auto. Contr. 53(3), 791–795 (2008)MathSciNetCrossRefGoogle Scholar
  111. 111.
    Tahbaz-Salehi, A., Jadbabaie, A.: Consensus over ergodic stationary graph processes. IEEE Trans. Auto. Contr. 55(1), 225–230 (2010)MathSciNetCrossRefGoogle Scholar
  112. 112.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Auto. Contr. 52(5), 863–868 (2007)MathSciNetCrossRefGoogle Scholar
  113. 113.
    Tian, Y.P., Liu, C.L.: Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans. Auto. Contr. 53(9), 2122–2128 (2008)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Tsitsiklis, J.N.: Problems in decentralized decision making and computation. Ph.D Thesis, MIT, New York (1984)Google Scholar
  115. 115.
    Tsitsiklis, J.N., Athans, M.: Guaranteed robustness properties of multivariable nonlinear stochastic optimal regulators. IEEE Trans. Auto. Contr. 29(8), 690–696 (1984)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Tuna, S.E.: Conditions for synchronizability in arrays of coupled linear systems. IEEE Trans. Auto. Contr. 54(10), 2416–2420 (2009)MathSciNetCrossRefGoogle Scholar
  117. 117.
    Vicsek, T., Czirok, A., Jacob, E.B., Cohen, I., Schochet, O.: Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)ADSCrossRefGoogle Scholar
  118. 118.
    Wang, W., Slotine, J.J.E.: Contraction analysis of time-delayed communications and group cooperation. IEEE Trans. Auto. Contr. 51(4), 712–717 (2006a)MathSciNetCrossRefGoogle Scholar
  119. 119.
    Wang, W., Slotine, J.J.E.: A theoretical study of different leader roles in networks. IEEE Trans. Auto. Contr. 51(7), 1156–1161 (2006b)MathSciNetCrossRefGoogle Scholar
  120. 120.
    Wang, L., Wang, X.: New conditions for synchronization in dynamical communication networks. Syst. Contr. Lett. 60(4), 219–225 (2011)MATHCrossRefGoogle Scholar
  121. 121.
    Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Auto. Contr. 55(4), 950–955 (2010)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Wang, Y.W., Wang, H.O., Xiao, J.W., Guan, Z.H.: Synchronization of complex dynamical networks under recoverable attacks. Automatica 46(1), 197–203 (2010)MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Wang, Y.W., Xiao, J.W., Wang, H.O.: Global synchronization of complex dynamical networks with network failures. Int. J. Robust Nonlinear Contr. 20(15), 1667–1677 (2010)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Wen, G., Duan, Z., Yu, W., Chen, G.: Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonlinear Contr. 22(2), 170–182 (2012)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Winkler, R.L.: The consensus of subjective probability distributions. Manage. Sci. B15(2), 61–75 (1968)Google Scholar
  126. 126.
    Wu, C.W.: Synchronization and convergence of linear dynamics in random directed networks. IEEE Trans. Auto. Contr. 51(7), 1207–1210 (2006)CrossRefGoogle Scholar
  127. 127.
    Xiao, F., Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans. Auto. Contr. 53(8), 1804–1816 (2008a)MathSciNetCrossRefGoogle Scholar
  128. 128.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Contr. Lett. 53(1), 65–78 (2004)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Xiao, F., Wang, L.: Consensus protocols for discrete-time multiagent systems with time-varying delays. Automatica 44(10), 2577–2582 (2008b)MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Xie, L., Xie, L.: Stability analysis of networked sampled-data linear systems with markovian packet losses. IEEE Trans. Auto. Contr. 54(6), 1368–1374 (2009)Google Scholar
  132. 132.
    Yang, P., Freeman, R., Lynch, K.: Multi-agent coordination by decentralized estimation and control. IEEE Trans. Auto. Contr. 53(11), 2480–2496 (2008)MathSciNetCrossRefGoogle Scholar
  133. 133.
    Yang, T., Roy, S., Wan, Y., Saberi, A.: Constructing consensus controllers for networks with identical general linear agents. Int. J. Robust Nonlinear Contr. 21(11), 1237–1256 (2011)MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Yang, H., Zhang, Z., Zhang, S.: Consensus of second-order multi-agent systems with exogenous disturbances. Int. J. Robust Nonlinear Contr. 21(9), 945–956 (2011)MATHCrossRefGoogle Scholar
  135. 135.
    Yao, J., Guan, Z.H., Hill, D.J.: Passivity-based control and synchronization of general complex dynamical networks. Automatica 45(9), 2107–2113 (2009)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Yin, G., Sun, Y., Wang, L.Y.: Asymptotic properties of consensus-type algorithms for networked systems with regime-switching topologies. Automatica 47(7), 1366–1378 (2011)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Yu, C., Anderson, B.D.O., Dasgupta, S., Fidan, B.: Control of minimally persistent formations in the plane. SIAM J. Contr. Optim. 48(1), 206–233 (2009)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Yu, W., Chen, G., Wang, Z., Yang, W.: Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybernet. B 39(6), 1568–1577 (2009)CrossRefGoogle Scholar
  139. 139.
    Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010a)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Yu, W., Chen, G., Cao, M., Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybernet. B 40(3), 881–891 (2010b)CrossRefGoogle Scholar
  141. 141.
    Yu, W., Chen, G., Ren, W., Kurths, J., Zheng, W.: Distributed higher-order consensus protocols in multiagent dynamical systems. IEEE Trans. Circ. Syst. I 58(8), 1924–1932 (2011)MathSciNetCrossRefGoogle Scholar
  142. 142.
    Yu, W., Lu, J., Chen, G., Duan, Z., Zhou, Q.: Estimating uncertain delayed genetic regulatory networks: an adaptive filtering approach. IEEE Trans. Auto. Contr. 54(4), 892–897 (2009)MathSciNetCrossRefGoogle Scholar
  143. 143.
    Yu, W., Zheng, W.X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47(7), 1496–1503 (2011)MathSciNetMATHCrossRefGoogle Scholar
  144. 144.
    Zavlanos, M.M., Pappas, G.J.: Potential fields for maintaining connectivity of mobile networks. IEEE Trans. Robot. 23(4), 812–816 (2007)CrossRefGoogle Scholar
  145. 145.
    Zavlanos, M.M., Pappas, G.J.: Distributed connectivity control of mobile networks. IEEE Trans. Robot. 24(6), 1416–1428 (2008)CrossRefGoogle Scholar
  146. 146.
    Zavlanos, M.M., Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Hybrid control for connectivity preserving flocking. IEEE Trans. Auto. Contr. 54(12), 2869–2875 (2009)MathSciNetCrossRefGoogle Scholar
  147. 147.
    Zhang, F., Leonard, N.E.: Cooperative filters and control for cooperative exploration. IEEE Trans. Auto. Contr. 55(3), 650–663 (2010)MathSciNetCrossRefGoogle Scholar
  148. 148.
    Zhang, Y., Tian, Y.P.: Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica 45(5), 1195–1201 (2009)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Zhang, Y., Tian, Y.P.: Consensus of data-sampled multi-agent systems with random communication delay and packet loss. IEEE Trans. Auto. Contr. 55(4), 939–943 (2010)MathSciNetCrossRefGoogle Scholar
  150. 150.
    Zhang, H., Ma, T., Huang, G.B., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybernet. B 40(3), 831–844 (2010)CrossRefGoogle Scholar
  151. 151.
    Zhang, H.T., Zhai, C., Chen, Z.: A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Trans. Auto. Contr. 56(2), 430–435 (2011)MathSciNetCrossRefGoogle Scholar
  152. 152.
    Zhou, J., Wang, Q.: Convergence speed in distributed consensus over dynamically switching random networks. Automatica 45(6), 1455–1461 (2009)MathSciNetMATHCrossRefGoogle Scholar
  153. 153.
    Zhao, J., Hill, D.J., Liu, T.: Synchronization of complex dynamical networks with switching topology: A switched system point of view. Automatica 45(11), 2502–2511 (2009)MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    Zhu, M., Martinez, S.: On the convergence time of asynchronous distributed quantized averaging algorithms. IEEE Trans. Auto. Contr. 56(2), 386–390 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina

Personalised recommendations