Skip to main content

Quantum–Dot Cellular Automata Design for Median Filtering and Mathematical Morphology Operations on Binary Images

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

The continuing development of smaller electronic devices into the nanometer regime offers great possibilities of highly parallel computing systems, as it allows to reduce power consumption and device sizes and to increase operating speed. Quantum-dot Cellular Automata (QCA) has been proposed as an alternative for nanoelectronic devices and introduces a new opportunity for the design of highly parallel algorithms and architectures. Its benefits are the fast speed, very small size, high density and low energy consumption. These advantages can be very useful for various real time image processing applications. Complex image processing algorithms include in many cases the well-known binary median filter and mathematical morphology operations such as dilation and erosion. In this paper we propose and simulate two innovative QCA circuits which implement the dilation and the erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, T.S. (ed.): Two-dimensional Digital Signal Processing II: Transforms and Median Filters. Springer, New York (1981)

    Google Scholar 

  2. Gallagher, N.C., Wise, G.L.: A Theoretical Analysis of the Properties of Median Filters. IEEE Transactions on Acoustic, Speech and Signal Processing, ASSP 29, 1136–1141 (1981)

    Article  Google Scholar 

  3. Breveglieri, L., Piuri, V.: Digital Median Filters. Journal of VLSI Signal Processing 31, 191–206 (2002)

    Article  MATH  Google Scholar 

  4. Serra, J., Soille, P.: Mathematical Morphology and its Applications to Image Processing. Kluwer, Norwell (1994)

    Book  MATH  Google Scholar 

  5. Matheron, G.: Random Sets and Integral Geometry. Wiley, N.Y. (1975)

    MATH  Google Scholar 

  6. Chatzis, V., Pitas, I.: A Generalized Fuzzy Mathematical Morphology and its Application in Robust 2D and 3D Object Representation. IEEE Trans. on Image Processing 9(10), 1798–1810 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Koskinen, L., Astola, J., Neuvo, Y.: Soft morphological filters. In: Proc. SPIE Symp. Image Algebra Morphological Image Processing, vol. 1568, pp. 262–270 (1991)

    Google Scholar 

  8. Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: A comparative study. Pattern Recognit. 28, 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  9. Maragos, P., Schafer, R.W.: Morphological Systems for Multidimensional Signal Processing. IEEE Proceedings 78(4), 690–710 (1990)

    Article  Google Scholar 

  10. Danielson, P.E., Levialdi, S.: Computer Architectures for Pictorial Information Systems. IEEE Computer Magazine, 53–67 (November 1981)

    Google Scholar 

  11. Reinhardt, J.M., Higgins, W.E.: Efficient morphological shape representation. IEEE Trans. Image Processing 5, 89–101 (1996)

    Article  Google Scholar 

  12. Venkateshwar Rao, D., Patil, S., Babu, N.A., Muthukumar, V.: Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages. International Journal of Theoretical and Applied Computer Sciences 1(1), 9–34 (2006)

    Google Scholar 

  13. Malamas, E.N., Malamos, A.G., Varvarigou, T.A.: Fast Implementation of Binary Morphological Operations on Hardware. Efficient Systolic Architectures Journal of VLSI Signal Processing 25, 79–93 (2000)

    Google Scholar 

  14. Nalpantidis, L., Amanatiadis, A., Sirakoulis, G.C., Gasteratos, A.: An Efficient Hierarchical Matching Algorithm for Processing Uncalibrated Stereo Vision Images and its Hardware Architecture. IET Image Processing 5(5), 481–492 (2011)

    Article  Google Scholar 

  15. Konstantinidis, K., Sirakoulis, G.C., Andreadis, I.: Design and Implementation of a Fuzzy Modified Ant Colony Hardware Structure for Image Retrieval. IEEE Transactions on Systems, Man and Cybernetics – Part C 50(3), 519–537 (2009)

    Google Scholar 

  16. The international technology roadmap for semiconductors: Emerging research devices 17 (2005), http://www.itrs.net/

  17. Antonelli, D.A., Chen, D.Z., Dysart, T.J., Hu, X.S.: Quantum-dot Cellular Automata (QCA) circuit partitioning: Problem modeling and solutions. In: Proc. of Design Auto. Conf., San Diego, CA (June 2004)

    Google Scholar 

  18. Akeela, R., Wagh, M.D.: A Five-input Majority Gate in Quantum-dot Cellular Automata. NSTI-Nanotech, 2011 vol. 2 (2011), ISBN 978-1-4398-7139-3, http://www.nsti.org

  19. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A majority reduction technique for adder structures in quantum-dot cellular. In: Proceedings of SPIE, vol. 5559, pp. 91–100 (2004)

    Google Scholar 

  20. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Journal of Applied Physics 75(3), 1818–1825 (1994), doi:10.1063/1.356375

    Article  Google Scholar 

  21. Wang, W., Walus, K., Jullien, G.A.: Quantum-Dot Cellular Automata Adders. In: IEEE International Conference on Nanotechnology IEEE-NANO, vol. 2, pp. 461–464 (2003), doi:10.1109/NANO.2003.1231818.

    Google Scholar 

  22. Fijany, A., Toomarian, N., Modarress, K., Spotnitz, M.: Bit-serial Adder Based on Quantum Dots. NASA technical report (January 2003)

    Google Scholar 

  23. Kim, K., Wu, K., Karri, R.: The Robust QCA Adder Designs Using Composable QCA Building Blocks. IEEE Transactions on CAD of Integrated Circuits and Systems 26(1), 176–183 (2007), doi:10.1109/TCAD.2006.883921

    Article  Google Scholar 

  24. Hänninen, I., Takala, J.: Arithmetic Design on Quantum-Dot Cellular Automata Nanotechnology. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 43–52. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Mardiris, V.A., Karafyllidis, I.G.: Universal cellular automaton cell using quantum cellular automata. Electronics Letters 45(12), 607–609

    Google Scholar 

  26. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-Dimensional Schemes for Clock-ing/Timing of QCA Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(1), 34–44 (2008), doi:10.1109/TCAD.2007.907020

    Article  Google Scholar 

  27. Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular quantum-dot cellular automata multiplexers for memory accessing. Journal of Circuits, Systems and Computers 19(2), 349–365

    Google Scholar 

  28. Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers International. Journal of Circuit Theory and Applications 38(8), 771–785

    Google Scholar 

  29. Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. INTEGRATION, the VLSI Journal 40, 503–515 (2007), doi:10.1016/j.vlsi.2006.08.001

    Article  Google Scholar 

  30. Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectronics Journal 38, 525–537 (2007), doi:10.1016/j.mejo.2007.03.013

    Article  Google Scholar 

  31. Vankamamidi, V., Ottavi, M., Lombardi, F.: Tile-Based Design of a Serial Memory in QCA. In: Proceedings of the 15th ACM Great Lakes Symposium on VLSI, pp. 201–206 (2005), doi:10.1145/1057661.1057711

    Google Scholar 

  32. Vankamamidi, V., Ottavi, M., Lombardi, F.: A Serial Memory by Quantum-Dot Cellular Automata (QCA). IEEE Transactions on Computers 57(8), 606–618 (2008), doi:10.1109/TC.2007.70831

    Article  MathSciNet  Google Scholar 

  33. Vankamamidi, V.M., Ottavi, M., Lombardi, F.: A Line-Based Parallel Memory for QCA Implementation. IEEE Transactions on Nanotechnology 4(6), 690–698 (2005), doi:10.1109/TNANO.2005.858589

    Article  Google Scholar 

  34. Niemier, M.T., Kontz, M.J., Kogge, P.: A Design of and Design Tools for a Novel Quantum Dot Based Microprocessor. In: Proceedings of the 37th Design Automation Conference, pp. 227–232 (2000), doi:10.1145/337292.337398

    Google Scholar 

  35. Crocker, M., Hu, X.S., Niemier, M., Yan, M., Bernstein, G.: PLAs in Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 7(3), 376–386 (2008), doi:10.1109/TNANO.2007.915022

    Article  Google Scholar 

  36. Helsingius, M., Kouosmanen, P., Astola, J.: Quantum-dot cells and their suability for nonlinear signal processing. In: Procceding og the IEEE EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP 1999, vol. 2, pp. 659–663 (1999)

    Google Scholar 

  37. Cardenas-Barrera, J.L., Platoniotis, K.N., Venetsanopoulos, A.N.: QCA implementation of a multichannel filter for image processing. Math. Probl. Eng. 8(l), 87–99 (2002)

    Article  MATH  Google Scholar 

  38. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.: Digital Logic Gate Using Quantum-dot Cellular Automata. Science 284(5412), 289–291 (1999), doi:10.1126/science.284.5412.289

    Article  Google Scholar 

  39. Lent, C.S., Tougaw, P.: A Device Architecture for Computing with Quantum Dots. Proceedings of the IEEE 85(4), 541–557 (1997), doi:10.1109/5.573740

    Article  Google Scholar 

  40. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. Journal of Computational and Computational and Theoretical Nanoscience 7, 1546–1553 (2010)

    Article  Google Scholar 

  41. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full adder. Microelectronics Journal 7(22), 820–826 (2010)

    Article  Google Scholar 

  42. Azghadi, M.R., Kavehei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full-adders. Journal of Applied Sciences 7(22), 3460–3468 (2007)

    Article  Google Scholar 

  43. Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Applied Physics Letters 77(5), 738–740 (2000), doi:10.1063/1.127103

    Article  Google Scholar 

  44. Walus, K., Dysart, T. J., Jullien, G. A., Budiman, A.R.: QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 3(1), 26–31 (2004), doi:10.1109/TNANO.2003.820815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panagiotopoulos, F.K., Mardiris, V.A., Chatzis, V. (2012). Quantum–Dot Cellular Automata Design for Median Filtering and Mathematical Morphology Operations on Binary Images. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics