Abstract
The continuing development of smaller electronic devices into the nanometer regime offers great possibilities of highly parallel computing systems, as it allows to reduce power consumption and device sizes and to increase operating speed. Quantum-dot Cellular Automata (QCA) has been proposed as an alternative for nanoelectronic devices and introduces a new opportunity for the design of highly parallel algorithms and architectures. Its benefits are the fast speed, very small size, high density and low energy consumption. These advantages can be very useful for various real time image processing applications. Complex image processing algorithms include in many cases the well-known binary median filter and mathematical morphology operations such as dilation and erosion. In this paper we propose and simulate two innovative QCA circuits which implement the dilation and the erosion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Huang, T.S. (ed.): Two-dimensional Digital Signal Processing II: Transforms and Median Filters. Springer, New York (1981)
Gallagher, N.C., Wise, G.L.: A Theoretical Analysis of the Properties of Median Filters. IEEE Transactions on Acoustic, Speech and Signal Processing, ASSP 29, 1136–1141 (1981)
Breveglieri, L., Piuri, V.: Digital Median Filters. Journal of VLSI Signal Processing 31, 191–206 (2002)
Serra, J., Soille, P.: Mathematical Morphology and its Applications to Image Processing. Kluwer, Norwell (1994)
Matheron, G.: Random Sets and Integral Geometry. Wiley, N.Y. (1975)
Chatzis, V., Pitas, I.: A Generalized Fuzzy Mathematical Morphology and its Application in Robust 2D and 3D Object Representation. IEEE Trans. on Image Processing 9(10), 1798–1810 (2000)
Koskinen, L., Astola, J., Neuvo, Y.: Soft morphological filters. In: Proc. SPIE Symp. Image Algebra Morphological Image Processing, vol. 1568, pp. 262–270 (1991)
Bloch, I., Maitre, H.: Fuzzy mathematical morphologies: A comparative study. Pattern Recognit. 28, 1341–1387 (1995)
Maragos, P., Schafer, R.W.: Morphological Systems for Multidimensional Signal Processing. IEEE Proceedings 78(4), 690–710 (1990)
Danielson, P.E., Levialdi, S.: Computer Architectures for Pictorial Information Systems. IEEE Computer Magazine, 53–67 (November 1981)
Reinhardt, J.M., Higgins, W.E.: Efficient morphological shape representation. IEEE Trans. Image Processing 5, 89–101 (1996)
Venkateshwar Rao, D., Patil, S., Babu, N.A., Muthukumar, V.: Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages. International Journal of Theoretical and Applied Computer Sciences 1(1), 9–34 (2006)
Malamas, E.N., Malamos, A.G., Varvarigou, T.A.: Fast Implementation of Binary Morphological Operations on Hardware. Efficient Systolic Architectures Journal of VLSI Signal Processing 25, 79–93 (2000)
Nalpantidis, L., Amanatiadis, A., Sirakoulis, G.C., Gasteratos, A.: An Efficient Hierarchical Matching Algorithm for Processing Uncalibrated Stereo Vision Images and its Hardware Architecture. IET Image Processing 5(5), 481–492 (2011)
Konstantinidis, K., Sirakoulis, G.C., Andreadis, I.: Design and Implementation of a Fuzzy Modified Ant Colony Hardware Structure for Image Retrieval. IEEE Transactions on Systems, Man and Cybernetics – Part C 50(3), 519–537 (2009)
The international technology roadmap for semiconductors: Emerging research devices 17 (2005), http://www.itrs.net/
Antonelli, D.A., Chen, D.Z., Dysart, T.J., Hu, X.S.: Quantum-dot Cellular Automata (QCA) circuit partitioning: Problem modeling and solutions. In: Proc. of Design Auto. Conf., San Diego, CA (June 2004)
Akeela, R., Wagh, M.D.: A Five-input Majority Gate in Quantum-dot Cellular Automata. NSTI-Nanotech, 2011 vol. 2 (2011), ISBN 978-1-4398-7139-3, http://www.nsti.org
Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A majority reduction technique for adder structures in quantum-dot cellular. In: Proceedings of SPIE, vol. 5559, pp. 91–100 (2004)
Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Journal of Applied Physics 75(3), 1818–1825 (1994), doi:10.1063/1.356375
Wang, W., Walus, K., Jullien, G.A.: Quantum-Dot Cellular Automata Adders. In: IEEE International Conference on Nanotechnology IEEE-NANO, vol. 2, pp. 461–464 (2003), doi:10.1109/NANO.2003.1231818.
Fijany, A., Toomarian, N., Modarress, K., Spotnitz, M.: Bit-serial Adder Based on Quantum Dots. NASA technical report (January 2003)
Kim, K., Wu, K., Karri, R.: The Robust QCA Adder Designs Using Composable QCA Building Blocks. IEEE Transactions on CAD of Integrated Circuits and Systems 26(1), 176–183 (2007), doi:10.1109/TCAD.2006.883921
Hänninen, I., Takala, J.: Arithmetic Design on Quantum-Dot Cellular Automata Nanotechnology. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 43–52. Springer, Heidelberg (2008)
Mardiris, V.A., Karafyllidis, I.G.: Universal cellular automaton cell using quantum cellular automata. Electronics Letters 45(12), 607–609
Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-Dimensional Schemes for Clock-ing/Timing of QCA Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(1), 34–44 (2008), doi:10.1109/TCAD.2007.907020
Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular quantum-dot cellular automata multiplexers for memory accessing. Journal of Circuits, Systems and Computers 19(2), 349–365
Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers International. Journal of Circuit Theory and Applications 38(8), 771–785
Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. INTEGRATION, the VLSI Journal 40, 503–515 (2007), doi:10.1016/j.vlsi.2006.08.001
Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectronics Journal 38, 525–537 (2007), doi:10.1016/j.mejo.2007.03.013
Vankamamidi, V., Ottavi, M., Lombardi, F.: Tile-Based Design of a Serial Memory in QCA. In: Proceedings of the 15th ACM Great Lakes Symposium on VLSI, pp. 201–206 (2005), doi:10.1145/1057661.1057711
Vankamamidi, V., Ottavi, M., Lombardi, F.: A Serial Memory by Quantum-Dot Cellular Automata (QCA). IEEE Transactions on Computers 57(8), 606–618 (2008), doi:10.1109/TC.2007.70831
Vankamamidi, V.M., Ottavi, M., Lombardi, F.: A Line-Based Parallel Memory for QCA Implementation. IEEE Transactions on Nanotechnology 4(6), 690–698 (2005), doi:10.1109/TNANO.2005.858589
Niemier, M.T., Kontz, M.J., Kogge, P.: A Design of and Design Tools for a Novel Quantum Dot Based Microprocessor. In: Proceedings of the 37th Design Automation Conference, pp. 227–232 (2000), doi:10.1145/337292.337398
Crocker, M., Hu, X.S., Niemier, M., Yan, M., Bernstein, G.: PLAs in Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 7(3), 376–386 (2008), doi:10.1109/TNANO.2007.915022
Helsingius, M., Kouosmanen, P., Astola, J.: Quantum-dot cells and their suability for nonlinear signal processing. In: Procceding og the IEEE EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP 1999, vol. 2, pp. 659–663 (1999)
Cardenas-Barrera, J.L., Platoniotis, K.N., Venetsanopoulos, A.N.: QCA implementation of a multichannel filter for image processing. Math. Probl. Eng. 8(l), 87–99 (2002)
Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.: Digital Logic Gate Using Quantum-dot Cellular Automata. Science 284(5412), 289–291 (1999), doi:10.1126/science.284.5412.289
Lent, C.S., Tougaw, P.: A Device Architecture for Computing with Quantum Dots. Proceedings of the IEEE 85(4), 541–557 (1997), doi:10.1109/5.573740
Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. Journal of Computational and Computational and Theoretical Nanoscience 7, 1546–1553 (2010)
Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full adder. Microelectronics Journal 7(22), 820–826 (2010)
Azghadi, M.R., Kavehei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full-adders. Journal of Applied Sciences 7(22), 3460–3468 (2007)
Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Applied Physics Letters 77(5), 738–740 (2000), doi:10.1063/1.127103
Walus, K., Dysart, T. J., Jullien, G. A., Budiman, A.R.: QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 3(1), 26–31 (2004), doi:10.1109/TNANO.2003.820815
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Panagiotopoulos, F.K., Mardiris, V.A., Chatzis, V. (2012). Quantum–Dot Cellular Automata Design for Median Filtering and Mathematical Morphology Operations on Binary Images. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-33350-7_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33349-1
Online ISBN: 978-3-642-33350-7
eBook Packages: Computer ScienceComputer Science (R0)