Advertisement

Creature Learning to Cross a CA Simulated Road

  • Anna T. Lawniczak
  • Jason B. Ernst
  • Bruno N. Di Stefano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7495)

Abstract

Agent-based models approximate the behaviour of simple natural and man-made systems. We present a simple cognitive agent capable of evaluating if a strategy has been applied successfully and capable of applying this strategy again with small changes to a similar but new situation. We describe some experimental results, present our conclusions, and outlines future work.

Keywords

Agents Cognitive Agents Learning Fuzzy Logic Fuzzy Learning Cellular Automata Rule 184 Nagel-Schreckenberg model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferber, J.: Multi-Agent Systems. An Introduction to Distributed Artificial Intelligence. Addison Wesley, London (1999)Google Scholar
  2. 2.
    Di Stefano, B.N., Lawniczak, A.T.: Cognitive agents: Functionality & performance requirements and a proposed software architecture. In: 2009 IEEE Toronto International Conference on Proc. of Science and Technology for Humanity (TIC-STH), pp. 509–514 (2009)Google Scholar
  3. 3.
    Lawniczak, A.T., Di Stefano, B.N.: Computational intelligence based architecture for cognitive agents. In: ICCS 2010, Procedia Computer Science, Amsterdam, Holland, May 31 - June 2, vol. 1(1), pp. 2221–2229. Elsevier (2010)Google Scholar
  4. 4.
    Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd., Chichester (2009)Google Scholar
  5. 5.
    Uhrmacher, A.M., Weyns, D.: Multi-Agent Systems Simulation and Applications. CRC Press, Taylor & Francis Group, Boca Raton (2009)Google Scholar
  6. 6.
    Kasabov, N.K.: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. The MIT Press, Cambridge (1988)Google Scholar
  7. 7.
    Tettamanzi, A., Tomassini, M.: Soft Computing, Integrating Evolutionary, Neural, and Fuzzy Systems. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  8. 8.
    Di Stefano, B.N., Lawniczak, A.T.: Modeling a Simple Adaptive Cognitive Agent. Acta Physica Polonica, B Proceedings Supplement 5(1), 21–29 (2012)CrossRefGoogle Scholar
  9. 9.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Physique I 2, 2221–2229 (1992)CrossRefGoogle Scholar
  10. 10.
    Marsland, S.: Machine Learning: An Algorithm Perspective. Chapman and Hall/CRC (2009)Google Scholar
  11. 11.
    Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press, Cambridge (2009)Google Scholar
  12. 12.
    Lawniczak, A.T., Di Stefano, B.N.: Development of CA model of highway traffic. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Martinez, G.J., Morita, K., Worsch, T. (eds.) Automata-2008, Theory and Applications of Cellular Automata. Luniver Press, U.K. (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna T. Lawniczak
    • 1
    • 2
  • Jason B. Ernst
    • 3
  • Bruno N. Di Stefano
    • 2
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of GuelphGuelphCanada
  2. 2.The Fields Institute for Research in Mathematical SciencesTorontoCanada
  3. 3.School of Computer ScienceUniversity of GuelphGuelphCanada
  4. 4.Nuptek Systems LtdTorontoCanada

Personalised recommendations