Skip to main content

Path Tracing on Polar Depth Maps for Robot Navigation

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

In this paper a Cellular Automata-based (CA) path estimation algorithm suitable for safe robot navigation is presented. The proposed method combines well established 3D vision techniques with CA operations and traces a collision free route from the foot of the robot to the horizon of a scene. Firstly, the depth map of the scene is obtained and, then, a polar transformation is applied. A v-disparity image calculation processing step is applied to the initial depth map separating the ground plane from the obstacles. In the next step, a CA floor field is formed representing all the distances from the robot to the traversable regions in the scene. The target point that the robot should move towards to, is tracked down and an additional CA routine is applied to the floor field revealing a traversable route that the robot should follow to reach its target location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marchese, F.M.: Multiple mobile robots path-planning with mca. In: International Conference on Autonomic and Autonomous Systems, ICAS 2006, pp. 56–56. IEEE (2006)

    Google Scholar 

  2. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton for the propagation of circular fronts and its applications. Engineering Applications of Artificial Intelligence 18(6), 731–744 (2005)

    Article  Google Scholar 

  3. Zhou, K., Ma, S., Zhu, X., Tang, L., Feng, X.: Improved ant colony algorithm based on cellular automata for obstacle avoidance in robot soccer. In: 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 5, pp. 298–302 (July 2010)

    Google Scholar 

  4. Marchese, F.M.: A directional diffusion algorithm on cellular automata for robot path-planning. Future Generation Computer Systems 18(7), 983–994 (2002)

    Article  MATH  Google Scholar 

  5. Marchese, F.: Cellular automata in robot path planning. In: Proceedings of the First Euromicro Workshop on Advanced Mobile Robot 1996, pp. 116–125. IEEE (1996)

    Google Scholar 

  6. Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path planning with cellular automata. In: Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry: Theoretical and Practical Issues on Cellular Automata, Citeseer, pp. 11–19 (2000)

    Google Scholar 

  7. Adorni, G., Cagnoni, S., Mordonini, M.: Cellular automata based inverse perspective transform as a tool for indoor robot navigation. In: AI* IA 99: Advances in Artificial Intelligence, pp. 345–355 (2000)

    Google Scholar 

  8. Ioannidis, K., Sirakoulis, G.C., Andreadis, I.: A path planning method based on cellular automata for cooperative robots. Applied Artificial Intelligence 25(8), 721–745 (2011)

    Article  Google Scholar 

  9. Pradel, G., Hoppenot, P.: Symbolic trajectory description in mobile robotics. Journal of Intelligent & Robotic Systems 45(2), 157–180 (2006)

    Article  Google Scholar 

  10. Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping. Measurement Science and Technology 22, 114027 (2011)

    Article  Google Scholar 

  11. Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. International Journal of Optomechatronics 2(4), 435–462 (2008)

    Article  Google Scholar 

  12. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)

    Article  Google Scholar 

  13. Castaneda, V., Mateus, D., Navab, N.: Stereo time-of-flight. In: International Conference on Computer Vision (November 2011)

    Google Scholar 

  14. Nalpantidis, L., Kostavelis, I., Gasteratos, A.: Stereovision-based algorithm for obstacle avoidance. In: Intelligent Robotics and Applications, pp. 195–204 (2009)

    Google Scholar 

  15. Kostavelis, I., Nalpantidis, L., Gasteratos, A.: Supervised Traversability Learning for Robot Navigation. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 289–298. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through v-disparity representation. In: IEEE Intelligent Vehicle Symposium 2002, vol. 2, pp. 646–651. IEEE (2002)

    Google Scholar 

  17. De Cubber, G., Doroftei, D., Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Stereo-based terrain traversability analysis for robot navigation. In: IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance, Brussels, Belgium (2009)

    Google Scholar 

  18. Huang, H.J., Guo, R.Y.: Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits. Physical Review E 78(2), 021131 (2008)

    Google Scholar 

  19. Zheng, Y., Jia, B., Li, X.G., Zhu, N.: Evacuation dynamics with fire spreading based on cellular automaton. Physica A: Statistical Mechanics and its Applications 390, 3147–3156 (2011)

    Article  Google Scholar 

  20. Procopio, M.J.: Hand-labeled DARPA LAGR datasets (2007), http://ml.cs.colorado.edu/~procopio/labeledlagrdata/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kostavelis, I., Boukas, E., Nalpantidis, L., Gasteratos, A. (2012). Path Tracing on Polar Depth Maps for Robot Navigation. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics