Skip to main content

Semi-analytic Natural Number Series Induction

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7526)

Abstract

The induction of natural number series is a prototypical intelligence test task. We present a system which solves this task semi-analytically. As first step the term structure defining a given number series is guessed. Then the semi-instantiated formula is used to abduct new number series examples which can be solved more easily.

Keywords

  • natural number series
  • example abduction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-33347-7_25
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-33347-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   72.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burghardt, J.: E-generalization using grammars. Artificial Intelligence 165, 1–35 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Lovett, A., Forbus, K., Usher, J.: A structure-mapping model of Raven’s Progressive Matrices. In: Proceedings of CogSci 2010 (2010)

    Google Scholar 

  • Ragni, M., Klein, A.: Predicting Numbers: An AI Approach to Solving Number Series. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 255–259. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  • Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cognitive Systems Research 12(3), 237–248 (2011)

    CrossRef  Google Scholar 

  • Tenenbaum, J., Griffiths, T., Kemp, C.: Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences 10(7), 309–318 (2006)

    CrossRef  Google Scholar 

  • The Online Encyclopedia of Integer Sequences (2012), http://oeis.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebers, M., Schmid, U. (2012). Semi-analytic Natural Number Series Induction. In: Glimm, B., Krüger, A. (eds) KI 2012: Advances in Artificial Intelligence. KI 2012. Lecture Notes in Computer Science(), vol 7526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33347-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33347-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33346-0

  • Online ISBN: 978-3-642-33347-7

  • eBook Packages: Computer ScienceComputer Science (R0)