Web Usage Based Adaptive Systems

  • Pablo Loyola Heufemann
  • Jorge Gaete Villegas
  • In-Young Ko
Part of the Studies in Computational Intelligence book series (SCI, volume 452)


The Internet is becoming an important tool for the realization of day-to-day activities, which leads to a new level of interaction between users and software systems. This new scenario presents endless opportunities as well as enormous challenges. In order to tackle these, user-adaptive software systems have been recently used. These technologies aim to allow computer systems to dynamically modify their content, structure and presentation for better delivery of the available resources, while considering the user’s interest and behavior, and most recently, mobile environments. This chapter overviews the newest technologies in the area of user-adaptive software systems applied to Web environments and proposes a set of directions for the future development of Web Usage Based Adaptive Systems in the new Internet environments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelzaher, T.F., Bhatti, N.: Web content adaptation to improve server overload behavior. Computer Networks 31(1116), 1563–1577 (1999)CrossRefGoogle Scholar
  2. 2.
    Anagnostopoulos, I., Bielikova, M., Wallace, M., Lee, J.W.T.: Intelligent hypermedia for the adaptive web: Foreword to the smap ’08 special session. In: International Workshop on Semantic Media Adaptation and Personalization, pp. 155–156 (2008)Google Scholar
  3. 3.
    Billsus, D., Brunk, C.A., Evans, C., Gladish, B., Pazzani, M.: Adaptive interfaces for ubiquitous web access. Communications of the ACM 45(5), 34–38 (2002)CrossRefGoogle Scholar
  4. 4.
    de Bra, P., Houben, G.J., Wu, H.: Aham: a dexter-based reference model for adaptive hypermedia, pp. 147–156 (1999)Google Scholar
  5. 5.
    de Bra, P., Santic, T.: Aha! meets interbook, and more... Google Scholar
  6. 6.
    Brambilla, M., Tziviskou, C.: Modeling ontology-driven personalization of web contents. In: Eighth International Conference on Web Engineering, ICWE 2008, pp. 247–260 (July 2008)Google Scholar
  7. 7.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User Adapted Interaction 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  8. 8.
    Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling and User-Adapted Interaction 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  9. 9.
    Brusilovsky, P., Maybury, M.T.: From adaptive hypermedia to the adaptive web. Communications of the ACM 45(5), 21–24 (2002)CrossRefGoogle Scholar
  10. 10.
    Bunt, A., Carenini, G., Conati, C.: Adaptive Content Presentation for the Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 409–432. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Cheverst, K., Mitchell, K., Davies, N.: The role of adaptive hypermedia in a context-aware tourist guide. Communications of the ACM 45(5), 47–51 (2002)CrossRefGoogle Scholar
  12. 12.
    Chung, W., Paynter, J.: Privacy issues on the internet. In: Proceedings of the 35th Annual Hawaii International Conference on HICSS, p. 9 (January 2002)Google Scholar
  13. 13.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Technol. 3, 1–27 (2003)CrossRefGoogle Scholar
  14. 14.
    Flake, G.W., Pennock, D.M.: Self-organization, self-regulation, and self-similarity on the fractal web. In: Lesmoir-Gordon, N. (ed.) The Colours of Infinity, pp. 88–118. Springer London (2010)Google Scholar
  15. 15.
    Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized user interfaces with supple. Artificial Intelligence 174(1213), 910–950 (2010)CrossRefGoogle Scholar
  16. 16.
    Gajos, K.Z., Wobbrock, J.O., Weld, D.S.: Automatically generating user interfaces adapted to users’ motor and vision capabilities. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, UIST 2007, pp. 231–240. ACM, New York (2007)CrossRefGoogle Scholar
  17. 17.
    Gopshtein, M., Feitelson, D.G.: Empirical quantification of opportunities for content adaptation in web servers. In: Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR 2010, pp. 5:1–5:11. ACM, New York (2010)Google Scholar
  18. 18.
    Gopshtein, M., Feitelson, D.G.: Trading off quality for throughput using content adaptation in web servers. In: Proceedings of the 4th Annual International Conference on Systems and Storage, SYSTOR 2011, pp. 6:1–6:14. ACM, New York (2011)Google Scholar
  19. 19.
    Granka, L.A., Joachims, T., Gay, G.: Eye-tracking analysis of user behavior in www search. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 478–479. ACM, New York (2004)Google Scholar
  20. 20.
    Hanson, V.L.: Age and web access: the next generation. In: Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibililty (W4A), W4A 2009, pp. 7–15. ACM, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Jan, R.-H., Lin, C.-P., Chern, M.-S.: An optimization model for web content adaptation. Comput. Netw. 50, 953–965 (2006)MATHCrossRefGoogle Scholar
  22. 22.
    Karuga, G.G., Khraban, A.M., Nair, S.K., Rice, D.O.: Adpalette: an algorithm for customizing online advertisements on the fly. Decision Support Systems 32(2), 85–106 (2001); Decision Support Issues in Customer Relationship Management and Interactive Marketing for E-CommerceGoogle Scholar
  23. 23.
    Kazienko, P.: Usage-based positive and negative verification of user interface structure. In: Fourth International Conference on Autonomic and Autonomous Systems, ICAS 2008, pp. 1–6 (March 2008)Google Scholar
  24. 24.
    Khoo, B.: Rfid as an enabler of the internet of things: Issues of security and privacy. In: Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing, pp. 709 –712 (October 2011)Google Scholar
  25. 25.
    Knutov, E., De Bra, P., Pechenizkiy, M.: Ah 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Review of Hypermedia and Multimedia 15(1), 5–38 (2009)CrossRefGoogle Scholar
  26. 26.
    Knutov, E., De Bra, P., Pechenizkiy, M.: AH 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Review of Hypermedia and Multimedia 15(1), 5–38 (2009)CrossRefGoogle Scholar
  27. 27.
    Lin, C.-C.: Optimal web site reorganization considering information overload and search depth. European Journal of Operational Research 173(3), 839–848 (2006)MATHCrossRefGoogle Scholar
  28. 28.
    Lin, C.-C., Tseng, L.-C.: Website reorganization using an ant colony system. Expert Systems with Applications 37(12), 7598–7605 (2010)CrossRefGoogle Scholar
  29. 29.
    Lingras, P., Lingras, R.: Adaptive hyperlinks using page access sequences and minimum spanning trees. In: IEEE International on Fuzzy Systems Conference of FUZZ-IEEE 2007, pp. 1–6 (July 2007)Google Scholar
  30. 30.
    Liu, J., Zhong, N., Yao, Y., Ras, Z.W.: The wisdom web: New challenges for web intelligence (wi). J. Intell. Inf. Syst. 20(1), 5–9 (2003)CrossRefGoogle Scholar
  31. 31.
    Nejdl, W., Wolpers, M.: Kbs hyperbook - a data-driven information system on the web. In: 8th International World Wide Web Conference (1998)Google Scholar
  32. 32.
    Popescu, E., Badica, C., Trigano, P.: Rules for learner modeling and adaptation provisioning in an educational hypermedia system. In: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC, pp. 492–499 (September 2007)Google Scholar
  33. 33.
    Prosser, W.: Privacy. Cal. Law Review 48, 383–389 (1960)CrossRefGoogle Scholar
  34. 34.
    Saremi, H.Q., Abedin, B., Kermani, A.M.: Website structure improvement: Quadratic assignment problem approach and ant colony meta-heuristic technique. Applied Mathematics and Computation 195(1), 285–298 (2008)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Sicilia, M.-A., Lytras, M.D., Snchez-Alonso, S., Barriocanal, E.G., Zapata-Ros, M.: Modeling instructional-design theories with ontologies: Using methods to check, generate and search learning designs. Computers in Human Behavior 27(4), 1389–1398 (2011)CrossRefGoogle Scholar
  36. 36.
    Sivasubramanian, S., Pierre, G., Van Steen, M., Alonso, G.: Analysis of caching and replication strategies for web applications. IEEE Internet Computing 11(1), 60–66 (2007)CrossRefGoogle Scholar
  37. 37.
    Sloan, D., Atkinson, M.T., Machin, C., Li, Y.: The potential of adaptive interfaces as an accessibility aid for older web users. In: Proceedings of the 2010 International Cross Disciplinary Conference on Web Accessibility (W4A), W4A 2010, p. 35:1–35:10. ACM, New York (2010)Google Scholar
  38. 38.
    Soukkarieh, B., Sedes, F.: Towards an adaptive web information system based on web services. In: International Conference on Autonomic and Autonomous Systems, pp. 272–277 (2008)Google Scholar
  39. 39.
    Trewin, S., Keates, S., Moffatt, K.: Developing steady clicks: a method of cursor assistance for people with motor impairments. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Assets 2006, pp. 26–33. ACM, New York (2006)CrossRefGoogle Scholar
  40. 40.
    Velásquez, J.D., Palade, V.: Adaptive web sitesa knowledge extraction from web data approach. In: Proceedings of the 2008 Conference on Adaptive Web Sites: A Knowledge Extraction from Web Data Approach, pp. 1–272. IOS Press, Amsterdam (2008)Google Scholar
  41. 41.
    Vesin, B., Ivanovic, M., Klasnja-Milicevic, A., Budimac, Z.: Rule-based reasoning for altering pattern navigation in programming tutoring system. In: 2011 15th International Conference on System Theory, Control, and Computing (ICSTCC), pp. 1–6 (October 2011)Google Scholar
  42. 42.
    Warren, S., Brandeis, L.: The right to privacy. Harvard Law Review 193(1) (1890)Google Scholar
  43. 43.
    Weiser, M.: The computer for the 21st century. IEEE Pervasive Computing 99(1), 19–25 (2002)CrossRefGoogle Scholar
  44. 44.
    White, T., Salehi-Abari, A., Box, B.: On How Ants Put Advertisements on the Web. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part II. LNCS, vol. 6097, pp. 494–503. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  45. 45.
    Whitten, A.: Are ip addresses personal? (February 2008)Google Scholar
  46. 46.
    Wobbrock, J.O., Fogarty, J., Liu, S.-Y(S.), Kimuro, S., Harada, S.: The angle mouse: target-agnostic dynamic gain adjustment based on angular deviation. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, pp. 1401–1410. ACM, New York (2009)CrossRefGoogle Scholar
  47. 47.
    Wobbrock, J.O., Kane, S.K., Gajos, K.Z., Harada, S., Froehlich, J.: Ability-based design: Concept, principles and examples. ACM Trans. Access. Comput. 3, 9:1–9:27 (April 2011)Google Scholar
  48. 48.
    Zakraoui, J., Zagler, W.: A Logical Approach to Web User Interface Adaptation. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 645–656. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  49. 49.
    Zemirline, N., Bourda, Y., Reynaud, C.: Leveraging Adaptive Web with Adaptation Patterns. Technical report 1529 (November 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo Loyola Heufemann
    • 1
  • Jorge Gaete Villegas
    • 2
  • In-Young Ko
    • 3
  1. 1.Division of Web Science and TechnologyKAISTDaejeonRepublic of Korea
  2. 2.Department of Computer ScienceKAISTDaejeonRepublic of Korea
  3. 3.Department of Computer Science and Division of Web Science and TechnologyKAISTDaejeonRepublic of Korea

Personalised recommendations