Advertisement

Relation Algebras, Matrices, and Multi-valued Decision Diagrams

  • Francis Atampore
  • Michael Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7560)

Abstract

In this paper we want to further investigate the usage of matrices as a representation of relations within arbitrary heterogeneous relation algebras. First, we want to show that splittings do exist in matrix algebras assuming that the underlying algebra of the coefficients provides this operation. Second, we want to outline an implementation of matrix algebras using reduced ordered multi-valued decision diagrams. This implementation combines the efficiency of operations based on those data structures with the general matrix approach to arbitrary relation algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atampore, F., Winter, M.: Relation Algebras, Matrices, and Multi-Valued Decision Diagrams. Brock University, Dep. of Computer Science Report CS-12-03 (2012), http://www.cosc.brocku.ca/research/reports
  2. 2.
    Bahar, I.R., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic Decision Diagrams amd their Applications. In: Proceedings of the International Conference on Computer-Aided Design, pp. 188–191. IEEE (1993)Google Scholar
  3. 3.
    Berghammer, R., Neumann, F.: RelView – An OBDD-Based Computer Algebra System for Relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Berghammer, R.: Applying Relation Algebra and RelView to solve Problems on Orders and Lattices. Acta Informatica 45(3), 211–236 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berghammer, R., Winter, M.: Embedding Mappings and Aplittings with Applications. Acta Informatica 47(2), 77–110 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berghammer, R., Rusinowska, A., de Swart, H.C.M.: Applying Relation Algebra and RelView to Measures in a Social Network. European Journal of Operational Research 202, 182–195 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall (1997)Google Scholar
  8. 8.
    Brace, K.S., Rudell, L.R., Bryant, E.R.: Efficient Implementation of a BDD Package. In: ACM/IEEE Design Automation Conference, pp. 40–42. IEEE (1990)Google Scholar
  9. 9.
    Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chin, L.H., Tarski, A.: Distributive and Modular Laws in the Arithmetic of Relation Algebras. University of California Press, Berkley and Los Angeles (1951)Google Scholar
  11. 11.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland (1990)Google Scholar
  12. 12.
    Miller, D.M., Drechsler, R.: Implementing a Multiple-Valued Decision Diagram Package. In: Proceedings of the 28th International Symposium on Multiple-Valued Logic (ISMVL 1998), pp. 52–57. IEEE (1998)Google Scholar
  13. 13.
    Nagayama, S., Sasao, T.: Code Generation for Embedded Systems using Heterogeneous MDDs. In: 12th Workshop on Synthesis and System Integration of Mixed Information Technologies (SASIMI 2003), pp. 258–264 (2003)Google Scholar
  14. 14.
    Nagayama, S., Sasao, T.: Compact Representations of Logic Functions using Heterogeneous MDDs. In: Proceedings of the 33rd International Symposium on Multiple-Valued Logic (ISML 2003), pp. 3168–3175. IEEE (2003)Google Scholar
  15. 15.
    Balbiani, P., Orlowska, E.: A Hierarchy of Modal Logics with Relative Accessibility Relations. Journal of Applied Non-Classical Logics 9(2-3) (1999)Google Scholar
  16. 16.
    Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci. Springer (1993)Google Scholar
  17. 17.
    Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and its Applications, vol. 132. Cambridge University Press (2010)Google Scholar
  18. 18.
    Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science. Advances in Computer Science. Springer, Vienna (1997)Google Scholar
  19. 19.
    Somenzi, F.: CUDD: CU Decision Diagram Package; Release 2.5.0. Department of Electrical, Computer, and Energy Engineering, University of Colorado (2012), http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
  20. 20.
    Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. Amer. Math. Soc. Colloq. Publ.4̃1 (1987)Google Scholar
  21. 21.
    Winter, M.: Strukturtheorie Heterogener Relationenalgebren mit Anwendung auf Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen GmbH, München (1998)Google Scholar
  22. 22.
    Winter, M.: Relation Algebras are Matrix Algebras over a suitable Basis. University of the Federal Armed Forces Munich, Report Nr. 1998-05 (1998)Google Scholar
  23. 23.
    Winter, M.: A Pseudo Representation Theorem for various Categories of Relations. TAC Theory and Applications of Categories 7(2), 23–37 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Winter, M.: Weak Relational Products. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 417–431. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Winter, M.: Goguen Categories - A Categorical Approach to L-fuzzy Relations. Trends in Logic, vol. 25 (2007)Google Scholar
  26. 26.
    Zierer, H.: Relation Algebraic Domain Constructions. Theoret. Comput. Sci. 87, 163–188 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francis Atampore
    • 1
  • Michael Winter
    • 1
  1. 1.Department of Computer ScienceBrock UniversitySt. CatharinesCanada

Personalised recommendations