A New Algorithm for Parameterized MAX-SAT

  • Ivan Bliznets
  • Alexander Golovnev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7535)

Abstract

We show how to check whether at least k clauses of an input formula in CNF can be satisfied in time O*(1.358k). This improves the bound O*(1.370k) proved by Chen and Kanj more than 10 years ago. Though the presented algorithm is based on standard splitting techniques its core are new simplification rules that often allow to reduce the size of case analysis. Our improvement is based on a simple algorithm for a special case of MAX-SAT where each variable appears at most 3 times.

Keywords

exact algorithms maximum satisfiability parameterized algorithms satisfiability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, J., Kanj, I.A.: Improved Exact Algorithms for MAX-SAT. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 341–355. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Niedermeier, R., Rossmanith, P.: New Upper Bounds for MaxSat. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 575–584. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bansal, N., Raman, V.: Upper Bounds for MaxSat: Further Improved. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Alon, N., Gutin, G., Kim, E., Szeider, S., Yeo, A.: Solving MAX-r-SAT Above a Tight Lower Bound. Algorithmica 61, 638–655 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Crowston, R., Gutin, G., Jones, M., Yeo, A.: A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications. Algorithmica 64(1), 56–68 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete Applied Mathematics 159(17), 2147–2164 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kulikov, A., Kutzkov, K.: New Bounds for MAX-SAT by Clause Learning. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 194–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bliznets: A New Upper Bound for (n,3)-MAX-SAT. Zapiski Nauchnikh Seminarov POMI, 5–14 (2012)Google Scholar
  10. 10.
    Lieberherr, K.J., Specker, E.: Complexity of Partial Satisfaction. J. ACM 28, 411–421 (1981)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Yannakakis, M.: On the approximation of maximum satisfiability. In: SODA 1992, pp. 1–9 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivan Bliznets
    • 1
  • Alexander Golovnev
    • 1
  1. 1.St. Petersburg University of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations