Skip to main content

On the (Non-)Equivalence of UC Security Notions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7496)

Abstract

Over the years, various security notions have been proposed in order to cope with a wide range of security scenarios. Recently, the study of security notions has been extended towards comparing cryptographic definitions of secure implementation with game-theoretic definitions of universal implementation of a trusted mediator. In this work we go a step further: We define the notion of game universal implementation and we show it is equivalent to weak stand-alone security. Thus, we are able to answer positively the open question from [17,18] regarding the existence of game-theoretic definitions that are equivalent to cryptographic security notions for which the ideal world simulator does not depend on both the distinguisher and the input distribution.

Additionally, we investigate the propagation of the weak stand-alone security notion through the existing security hierarchy, from stand-alone security to universal composability. Our main achievement in this direction is a separation result between two variants of the UC security definition: 1-bit specialized simulator UC security and specialized simulator UC security. The separation result between the UC variants was stated as an open question [23] and it comes in contrast with the well known equivalence result between 1-bit UC security and UC security.

Keywords

  • security models
  • UC security
  • time-lock puzzles
  • game theory

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-33272-2_8
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-33272-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   83.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC 2006), pp. 53–62 (2006)

    Google Scholar 

  2. Backes, M., Pfitzmann, B., Waidner, M.: A General Composition Theorem for Secure Reactive Systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority. J. Cryptology 4(2) (1991)

    Google Scholar 

  4. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145 (2001), full version on Cryptology ePrint Archive, Report 2000/067

    Google Scholar 

  5. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Ciobotaru, O.: On the (non-)equivalence of uc security notions. Cryptology ePrint Archive, Report 2011/355 (2011), http://eprint.iacr.org/

  7. Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM 50(6), 852–921 (2003)

    MathSciNet  CrossRef  Google Scholar 

  9. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: recent results and future directions. In: 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M 2002), pp. 1–13 (2002)

    Google Scholar 

  10. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: FOCS, pp. 174–187 (1986)

    Google Scholar 

  12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  13. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal of Cryptology 7(1), 1–32 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  16. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: STOC 2004, pp. 623–632 (2004)

    Google Scholar 

  17. Halpern, J.Y., Pass, R.: A computational game-theoretic framework for cryptography (2010) (unpublished manuscript)

    Google Scholar 

  18. Halpern, J.Y., Pass, R.: Game theory with costly computation: Formulation and application to protocol security. In: Innovations in Computer Science (ICS 2010), pp. 120–142 (2010)

    Google Scholar 

  19. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1997, pp. 25–34 (1997)

    Google Scholar 

  20. Hofheinz, D., Unruh, D.: Comparing Two Notions of Simulatability. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 86–103. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  21. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  22. Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  23. Lindell, Y.: General composition and universal composability in secure multi-party computation. In: FOCS, pp. 394–403 (2003)

    Google Scholar 

  24. Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315 (2006)

    Google Scholar 

  25. Micali, S., Rogaway, P.: Secure Computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

    Google Scholar 

  26. Pfitzmann, B., Schunter, M., Waidner, M.: Cryptographic security of reactive systems. Electr. Notes Theor. Comput. Sci. 32 (2000)

    Google Scholar 

  27. Pfitzmann, B., Waidner, M.: A general framework for formal notions of secure systems (1994), http://www.semper.org/sirene/lit

  28. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: CCS 2000: Proceedings of the 7th ACM Conference on Computer and Communications Security, pp. 245–254. ACM (2000)

    Google Scholar 

  29. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: IEEE Symposium on Security and Privacy, pp. 184–200 (2001)

    Google Scholar 

  30. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech. rep., Massachusetts Institute of Technology (1996)

    Google Scholar 

  31. Yao, A.C.: Theory and application of trapdoor functions. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 80–91 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciobotaru, O. (2012). On the (Non-)Equivalence of UC Security Notions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds) Provable Security. ProvSec 2012. Lecture Notes in Computer Science, vol 7496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33272-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33272-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33271-5

  • Online ISBN: 978-3-642-33272-2

  • eBook Packages: Computer ScienceComputer Science (R0)