Abstract
One problem in current Brain-Computer Interfaces (BCIs) is non-stationarity of the underlying signals. This causes deteriorating performance throughout a session and difficulties to transfer a classifier from one session to another, which results in the need of collecting training data every session. Using an adaptive classifier is one solution to keep the performance stable and reduce the amount of training that is needed for a good BCI performance. In this paper we present an approach for an adaptive classifier based on a Support Vector Machine (SVM). We evaluate its advantage on offline BCI data and show its benefits and online feasibility in an online experiment using a MEG-based BCI with 10 subjects.
Keywords
- Brain-Computer interface (BCI)
- adaptive control
- Support Vector Machine (SVM)
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain-computer interface (BCI). NeuroImage 36(3), 581–593 (2007)
Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, K.-R.: Towards adaptive classification for BCI (2006)
Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A., Mehring, C.: Adaptive classification for brain computer interfaces. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 2536–2539 (August 2007)
Vidaurre, C., Schlögl, A., Blankertz, B., Kawanabe, M., Müller, K.: Unsupervised adaptation of the lda classifier for brain-computer interfaces. In: Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course, pp. 122–127 (2008)
Liu, G., Zhang, D., Meng, J., Huang, G., Zhu, X.: Unsupervised adaptation of electroencephalogram signal processing based on fuzzy c-means algorithm. International Journal of Adaptive Control and Signal Processing (2011)
Vidaurre, C., Kawanabe, M., von Bünau, P., Blankertz, B., Müller, K.R.: Toward Unsupervised Adaptation of LDA for Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering 58(3), 587–597 (2011)
Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley-Interscience ( September 1998)
Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, pp. 92–100. ACM, New York (1998)
Lin, H.-T., Lin, C.-J., Weng, R.: A note on Platt’s probabilistic outputs for support vector machines. Machine Learning 68, 267–276 (2007)
Chen, P.H., Fan, R.E., Lin, C.J.: A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks 17, 893–908 (2006)
Diehl, C.P., Cauwenberghs, G.: SVM Incremental Learning, Adaptation and Optimization. In: Proceedings of the 2003 International Joint Conference on Neural Networks, pp. 2685–2690 (2003)
Bensch, M., Mellinger, J., Bogdan, M., Rosenstiel, W.: A multiclass BCI using MEG. In: Proceedings of the 4th Int. Brain-Computer Interface Workshop, Graz, pp. 191–196 (September 2008)
Spüler, M., Rosenstiel, W., Bogdan, M.: A fast feature selection method for high-dimensional MEG BCI data. In: Proceedings of the 5th Int. Brain-Computer Interface Conference, Graz, pp. 24–27 ( September 2011)
Tamura, H., Kawano, S., Tanno, K.: Unsupervised learning method for a support vector machine and its application to surface electromyogram recognition. Artificial Life and Robotics 14, 362–366 (2009), doi:10.1007/s10015-009-0682-1
Li, Y., Guan, C., Li, H., Chin, Z.: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Letters 29(9), 1285–1294 (2008)
Spüler, M., Bensch, M., Kleih, S., Rosenstiel, W., Bogdan, M., Kübler, A.: Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clinical Neurophysiology 123(7), 1328–1337 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spüler, M., Rosenstiel, W., Bogdan, M. (2012). Adaptive SVM-Based Classification Increases Performance of a MEG-Based Brain-Computer Interface (BCI). In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_84
Download citation
DOI: https://doi.org/10.1007/978-3-642-33269-2_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33268-5
Online ISBN: 978-3-642-33269-2
eBook Packages: Computer ScienceComputer Science (R0)