Skip to main content

Silicon Neurons That Compute

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7552)

Abstract

We use neuromorphic chips to perform arbitrary mathematical computations for the first time. Static and dynamic computations are realized with heterogeneous spiking silicon neurons by programming their weighted connections. Using 4K neurons with 16M feed-forward or recurrent synaptic connections, formed by 256K local arbors, we communicate a scalar stimulus, quadratically transform its value, and compute its time integral. Our approach provides a promising alternative for extremely power-constrained embedded controllers, such as fully implantable neuroprosthetic decoders.

Keywords

  • Neuromorphic chips
  • Silicon neurons
  • Probabilisitic synapses

This is a preview of subscription content, access via your institution.

Buying options

Chapter
GBP   19.95
Price includes VAT (United Kingdom)
  • DOI: 10.1007/978-3-642-33269-2_16
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
GBP   61.99
Price includes VAT (United Kingdom)
  • ISBN: 978-3-642-33269-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
GBP   78.50
Price includes VAT (United Kingdom)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarpeshkar, R., Delbruck, T., Mead, C.A.: White noise in MOS transistors and resistors. IEEE Circuits and Devices Magazine 9(6), 23–29 (1993)

    CrossRef  Google Scholar 

  2. Eliasmith, C., Anderson, C.H.: Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Boahen, K.: A Burst-Mode Word-Serial Address-Event Link-I: Transmitter Design. IEEE Transactions on Circuits and Systems I 51(7), 1269–1280 (2004)

    CrossRef  Google Scholar 

  4. Silver, R., Boahen, K., Grillner, S., Kopell, N., Olsen, K.L.: Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. Journal of Neuroscience 27(44), 11807–11819 (2007)

    CrossRef  Google Scholar 

  5. Gao, P., Benjamin, B.V., Boahen, K.: Dynamical system guided mapping of quantitative neuronal models onto neuromorphic hardware. IEEE Transactions on Circuits and Systems (in press, 2012)

    Google Scholar 

  6. Benjamin, B.V., Arthur, J.V., Gao, P., Merolla, P., Boahen, K.: A Superposable Silicon Synapse with Programmable Reversal Potential. In: International Conference of the IEEE Engineering and Medicine in Biology Society (in press, 2012)

    Google Scholar 

  7. Arthur, J.V., Boahen, K.A.: Synchrony in Silicon: The Gamma Rhythm. IEEE Transactions on Neural Networks 18(6), 1815–1825 (2007)

    CrossRef  Google Scholar 

  8. Goldberg, D.H., Cauwenberghs, G., Andreou, A.G.: Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Netw. 14(6-7), 781–793 (2001)

    CrossRef  Google Scholar 

  9. Andreou, A.G., Boahen, K.: Translinear circuits in subthreshold MOS. J. Anal. Integr. Circuits Signal Process 9, 141–166 (1996)

    CrossRef  Google Scholar 

  10. Dethier, J., Nuyujukian, P., Eliasmith, C., Stewart, T., Elassaad, S.A., Shenoy, K.V., Boahen, K.: A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choudhary, S. et al. (2012). Silicon Neurons That Compute. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)