Abstract
In this paper, we propose a Variable-sized Kohonen Feature Map Probabilistic Associative Memory (VKFMPAM). The proposed model can realize the probabilistic association for the training set including one-to-many relations, and neurons can be added in the Map Layer if necessary. We carried out a series of computer experiments and confirmed the effectiveness of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Kohonen, T.: Self-Organizing Maps. Springer (1994)
Ichiki, H., Hagiwara, M., Nakagawa, M.: Kohonen feature maps as a supervised learning machine. In: ICNN, pp. 1944–1948 (1993)
Yamada, T., Hattori, M., Morisawa, M., Ito, H.: Sequential learning for associative memory using Kohonen feature map. In: IJCNN, Washington D.C. (1999)
Abe, H., Osana, Y.: Kohonen feature map associative memory with area representation. In: IASTED AIA, Innsbruck (2006)
Noguchi, S., Osana, Y.: Improved Kohonen feature map probabilistic associative memory based on weights distribution. In: IJCNN, Barcelona (2010)
Imabayashi, T., Osana, Y.: Variable-sized KFM associative memory with refractoriness based on area representation. In: SMC, San Antonio (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sato, H., Osana, Y. (2012). Variable-Sized Kohonen Feature Map Probabilistic Associative Memory. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-33266-1_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33265-4
Online ISBN: 978-3-642-33266-1
eBook Packages: Computer ScienceComputer Science (R0)