Skip to main content

Introduction

  • Chapter
  • First Online:
Prokaryotic Toxin-Antitoxins

Abstract

In the last decade, the field of “Prokaryotic Toxin—Antitoxins” has developed into an exciting branch of molecular microbiology, with many basic discoveries that have increased our understanding of these genes and that may lead to important breakthroughs in medical microbiology and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, G. C, Jr, & Kornberg, A. (1991). Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. Journal of Biological Chemistry, 266, 22096–22101.

    PubMed  CAS  Google Scholar 

  • Arcus, V. L., McKenzie, J. L., Robson, J., & Cook, G. M. (2011). The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Engineering Design and Selection, 24, 33–40.

    Article  CAS  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  • Blower, T. R., Pei, X. Y., Short, F. L., Fineran, P. C., Humphreys, D. P., Luisi, B. F., et al. (2011a). A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nature Structural and Molecular Biology, 18, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Blower, T. R., Salmond, G. P., & Luisi, B. F. (2011b). Balancing at survival’s edge: The structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Current Opinion in Structural Biology, 21, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Boe, L., Gerdes, K., & Molin, S. (1987). Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. Journal of Bacteriology, 169, 4646–4650.

    PubMed  CAS  Google Scholar 

  • Bordes, P., Cirinesi, A. M., Ummels, R., Sala, A., Sakr, S., Bitter, W., et al. (2011). SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences USA, 108, 8438–8443.

    Article  CAS  Google Scholar 

  • Bravo, A., Detorrontegui, G., & Diaz, R. (1987). Identification of components of a new stability system of plasmid R1, pard, that is close to the origin of replication of this plasmid. Molecular and General Genetics, 210, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Buts, L., Lah, J., Dao-Thi, M. H., Wyns, L., & Loris, R. (2005). Toxin-antitoxin modules as bacterial metabolic stress managers. Trends in Biochemical Sciences, 30, 672–679.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy Sciences USA, 98, 14328–14333.

    Article  CAS  Google Scholar 

  • Condon, C. (2006). Shutdown decay of mRNA. Molecular Microbiology, 61, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., & Salmond, G. P. (2009). The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy Sciences USA, 106, 894–899.

    Article  CAS  Google Scholar 

  • Gerdes, K., & Wagner, E. G. H. (2007). RNA antitoxins. Current Opinion in Microbiology, 10, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., Larsen, J. E., & Molin, S. (1985). Stable inheritance of plasmid R1 requires two different loci. Journal of Bacteriology, 161, 292–298.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Rasmussen, P. B., & Molin, S. (1986). Unique type of plasmid maintenance function—Postsegregational killing of plasmid-free cells. Proceedings of the National academy of Sciences of the USA, 83, 3116–3120.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., Gultyaev, A. P., Franch, T., Pedersen, K., & Mikkelsen, N. D. (1997). Antisense RNA-regulated programmed cell death. Annual Review of Genetics, 31, 1–31.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., Christensen, S. K., & Lobner-Olesen, A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nature Reviews Microbiology, 3, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Grønlund, H., & Gerdes, K. (1999). Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. Journal of Molecular Biology, 285, 1401–1415.

    Article  PubMed  Google Scholar 

  • Hallez, R., Geeraerts, D., Sterckx, Y., Mine, N., Loris, R., & Van, M. L. (2010). New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Molecular Microbiology, 76, 719–732.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, F. (2003). Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301, 1496–1499.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, F., & Van Melderen, L. (2011). Toxins-antitoxins: Diversity, evolution and function. Critical Reviews in Biochemistry and Molecular Biology, 46, 386–408.

    Article  PubMed  CAS  Google Scholar 

  • Hazan, R., & Engelberg-Kulka, H. (2004). Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Molecular Genetics and Genomics, 272, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., Jaffe, A., Ogura, T., Mori, H., & Takahashi, H. (1986). F-Plasmid ccd mechanism in escherichia-coli. Journal of Bacteriology, 166, 100–104.

    PubMed  CAS  Google Scholar 

  • Jensen, R. B., Grohmann, E., Schwab, H., Diazorejas, R., & Gerdes, K. (1995). Comparison of ccd of F, parde of Rp4, and pard of R1 using a novel conditional replication control-system of plasmid R1. Molecular Microbiology, 17, 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Minami, S., Rubin, E., & Lewis, K. (2011). Characterization and transcriptome analysis of mycobacterium tuberculosis persisters. MBio, 2, e00100–e00111.

    Article  PubMed  Google Scholar 

  • Lehnherr, H., Maguin, E., Jafri, S., & Yarmolinsky, M. B. (1993). Plasmid addiction genes of bacteriophage-P1-Doc, which causes cell-death on curing of prophage, and Phd, which prevents host death when prophage is retained. Journal of Molecular Biology, 233, 414–428.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Villarejo, J., ago-Navarro, E., Hernandez-Arriaga, A. M., & az-Orejas, R. (2012). Kis antitoxin couples plasmid R1 replication and parD (kis, kid) maintenance modules. Plasmid, 67, 118–127.

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G., & Gerdes, K. (2011). Bacterial persistence by RNA endonucleases. Proceedings of the National Academy Sciences USA, 108, 13206–13211.

    Article  CAS  Google Scholar 

  • Mutschler, H., Gebhardt, M., Shoeman, R. L., & Meinhart, A. (2011). A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biology, 9, e1001033.

    Article  PubMed  CAS  Google Scholar 

  • Nariya, H., & Inouye, M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell, 132, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., & Hiraga, S. (1983). Mini-F plasmid genes that couple host-cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 80, 4784–4788.

    Article  CAS  Google Scholar 

  • Pecota, D. C., & Wood, T. K. (1996). Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. Journal of Bacteriology, 178, 2044–2050.

    PubMed  CAS  Google Scholar 

  • Pimentel, B., Madine, M. A., & de la Cueva-Mendez, G. (2005). Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1. EMBO Journal, 24, 3459–3469.

    Article  PubMed  CAS  Google Scholar 

  • Ramage, H. R., Connolly, L. E., & Cox, J. S. (2009). Comprehensive functional analysis of mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genetics, 5, e1000767.

    Article  PubMed  Google Scholar 

  • Shah,D., Zhang,Z.G., Khodursky,A., Kaldalu,N., Kurg,K., Lewis,K. (2006) Persisters: a distinct physiological state of E-coli. Bmc Microbiology 6.

    Google Scholar 

  • Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H. Y., et al. (2011). TADB: A web-based resource for type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39, D606–D611.

    Article  PubMed  Google Scholar 

  • Sia, E. A., Roberts, R. C., Easter, C., Helinski, D. R., & Figurski, D. H. (1995). Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. Journal of Bacteriology, 177, 2789–2797.

    PubMed  CAS  Google Scholar 

  • Smith, A. S., & Rawlings, D. E. (1997). The poison-antidote stability system of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2. Molecular Microbiology, 26, 961–970.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres, S., Dauti, M., Wilde, C., Mazel, D., & Rowe-Magnus, D. A. (2007). Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Molecular Microbiology, 63, 1588–1605.

    Article  PubMed  CAS  Google Scholar 

  • Van Melderen, L., Bernard, P., & Couturier, M. (1994). Lon-dependent proteolysis of ccdA is the key control for activation of ccdB in plasmid-free segregant bacteria. Molecular Microbiology, 11, 1151–1157.

    Article  PubMed  Google Scholar 

  • Wozniak, R. A., & Waldor, M. K. (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genetics, 5, e1000439.

    Article  PubMed  Google Scholar 

  • Yamaguchi, Y., & Inouye, M. (2011). Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nature Reviews Microbiology, 9, 779–790.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Park, J. H., & Inouye, M. (2011). Toxin-antitoxin systems in bacteria and archaea. Annual Review of Genetics, 45, 61–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Manuel Espinosa Padron for comments to the manuscript. This work was supported by the Welcome Trust and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenn Gerdes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerdes, K. (2013). Introduction. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_1

Download citation

Publish with us

Policies and ethics