On the Evolutionary Optimization of Chaos Control – A Brief Survey

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 192)


This work represents the brief introduction into the issues of evolutionary optimization of discrete chaotic systems. This work introduces and compares evolutionary approach representing tuning of parameters for an existing control method either with the standard cost function using the numerical desired state as the one of the input or blackbox type cost function, as well as meta-evolutionary approach representing synthesis of a whole control law by means of Analytic Programming (AP). The main part of this work is focused on the proper development of the cost function used in evolutionary process. As an example of discrete chaotic system, one-dimensional Logistic equation was used. For the experiments following soft computing tools were utilized: Symbolic regression tool Analytic Programming and evolutionary algorithms Self-Organizing Migrating Algorithm (SOMA) and Differential Evolution (DE).


Cost Function Periodic Orbit Differential Evolution Chaotic System Logistic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals 40(1), 111–129 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Evolutionary Design of Chaos Control in 1D. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 165–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Computers & Mathematics with Applications 60(4), 1026–1037 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Pyragas, K.: Control of chaos via extended delay feedback. Physics Letters A 206, 323–330 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H.G. (ed.) Handbook of Chaos Control. Wiley-Vch (1999)Google Scholar
  6. 6.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Physics Letters A 170, 421–428 (1992)CrossRefGoogle Scholar
  7. 7.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011)Google Scholar
  8. 8.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Evolutionary Optimization Of Henon Map Control – A Blackbox Approach. International Journal of Operational Research 13(2), 129–146 (2012)CrossRefGoogle Scholar
  9. 9.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Mathematical and Computer Modelling (2010), doi:10.1016/j.mcm.2011.05.030Google Scholar
  10. 10.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Application of Analytic Programming for Evolutionary Synthesis of Control Law - Introduction of Two Approaches. In: Byrski, A., Carvalho, Z.O.M., Dorohinicki, M.K. (eds.) Advances in Intelligent Modelling and Simulation: Simulation Tools and Applications. Springer Series. SCI, pp. 253–268 (2012) ISBN: 978-3-642-28887-6Google Scholar
  11. 11.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Application of Evolutionary Techniques for Optimization of Chaos Control – Introduction of Three Approaches. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization. Springer Series "Inteligent Systems" (in press), ISBN 978-3-642-30503-0Google Scholar
  12. 12.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Evolutionary Synthesis of Control Law for Higher Periodic Orbits of Chaotic Logistic Equation. In: Proceedings of 25th European Conference on Modelling and Simulation, pp. 452–458 (2011)Google Scholar
  13. 13.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Evolutionary Synthesis of Controller for Stabilization of Synthesized Chaotic System Oscillations. In: Proceedings of 17th International Conference on Soft Computing – MENDEL 2011, pp. 73–79 (2011) ISBN 978-80-214-4302-0Google Scholar
  14. 14.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press (2000)Google Scholar
  15. 15.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press (2001) ISBN: 0-691-08861-6Google Scholar
  16. 16.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study. International Journal of Simulation Systems, Science and Technology 6(9), 44–56 (2005) ISSN: 1473-8031Google Scholar
  17. 17.
    Lampinen, J., Zelinka, I.: New Ideas in Optimization – Mechanical Engineering Design Optimization by Differential Devolution, vol. 1, 20 p. McGraw-hill, London (1999) ISBN 007-709506-5 Google Scholar
  18. 18.
    Oplatková, Z., Zelinka, I.: Investigation on Evolutionary Synthesis of Movement Commands. Modelling and Simulation in Engineering (2009) ISSN: 1687-559Google Scholar
  19. 19.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, 33. Springer (2004)Google Scholar
  20. 20.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer (1995)Google Scholar
  21. 21.
    Coelho, L.D.: Self-organizing migration algorithm applied to machining allocation of clutch assembly. Mathematics and Computers in Simulation 80(2), 427–435 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Coelho, L.D.: Self-Organizing Migrating Strategies Applied to Reliability-Redundancy Optimization of Systems. IEEE Transactions on Reliability 58(3), 501–510 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Coelho, L.D., Mariani, V.C.: An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Conversion and Management 51(12), 2580–2587 (2010)CrossRefGoogle Scholar
  24. 24.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Varacha, P., Jasek, R.: ANN Synthesis for an Agglomeration Heating Power Consumption Approximation. In: Recent Researches in Automatic Control, pp. 239–244. WSEAS Press, Montreux, ISBN 978-1-61804-004-6Google Scholar
  26. 26.
    Varacha, P., Zelinka, I.: Distributed Self-Organizing Migrating Algorithm Application and Evolutionary Scanning. In: Proceedings of the 22nd European Conference on Modelling and Simulation, ECMS, pp. 201–206 (2008) ISBN 0-9553018-5-8Google Scholar
  27. 27.
    Zelinka, I.: SOMA homepage, (accessed June 15, 2012)
  28. 28.
    Price, K., Storn, R.M.: Differential evolution homepage, (accessed June 15, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations