Observer Design for Polytopic Systems: Application to Chaotic System Reconstruction

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 192)

Abstract

Many studies concerning design of controllers and observers for a class of nonlinear systems described in polytopic representation are carried out. Such representation includes Takagi-Sugeno models, LPV models, switching models, PLDI... Particularly, T-S models are obtained by interpolation of M local LTI (linear time invariant) models throughout convex functions. The choice of the number of local models may be intuitively chosen by considering some operating regimes. Each LTI model can be obtained by using a direct linearization of an a priori nonlinear model around operating points, or alternatively by using an identification procedure. Based on the Lyapunov method and Linear Matrix Inequalities (LMI) formulation, sufficient conditions have been derived for controllers and observers design. Recently, systems subject to unknown inputs are considered for measurable and immeasurable decision variables. Unknown inputs can result either from model uncertainty, faults or due to the presence of unknown external excitation. These different results have been widely applied in the field of fault diagnosis (FDI), fault tolerance (FTC) and also for secure communications. Indeed, the increasing need of secure communications leads to the development of many techniques which make difficult the detecting of transmitted message. Based on unknown inputs observer design, many works have been carried out on secure communication and chaotic system reconstruction problem. In this framework, unknown inputs Takagi-Sugeno fuzzy observer has been exstensively used. The design of such observers is considered based on LMI and Lyapunov methods. The pole placement in an LMI region is also considered to improve the observer performances. Examples are given to illustrate a chaotic cryptosystem procedure where the plaintext (message) is encrypted using chaotic signals at the drive system side and the plaintext is retrieved via the designed unknown input observer.

Keywords

Fuzzy model unknown inputs state estimation Lyapunov method linear matrix inequalities (LMI) chaotic system reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, S., et al.: Linear matrix inequalities in systems and control theory. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  2. 2.
    Murray-Smith, R., Johansen, T.: T-S model approaches to modelling and control. Taylor & Francis (1997)Google Scholar
  3. 3.
    Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: State and Unknown Input Estimation for Discrete Time T-S Model. Journal of Franklin Institute (2009) (in press), doi:10.1016/j.jfranklin.2009.02.011Google Scholar
  4. 4.
    Chadli, M., Maquin, D., Ragot, J.: An LMI formulation for output feedback stabilisation in T-S model approach. In: IEEE 41st Conference on Decision Control, USA, December 10-13 (2002)Google Scholar
  5. 5.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. on Systems, Man, Cybernetics. 15(1), 116–132 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A linear Matrix Inequality Approach. John Wiley & Sons, Inc. (2001)Google Scholar
  7. 7.
    Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: On the Design of Observer for Unknown Iinputs Fuzzy Models. International Journal of Automation and Control 2(1), 113–125 (2008)CrossRefGoogle Scholar
  8. 8.
    Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. on Fuzzy Sets 8(5), 523–534 (2000)CrossRefGoogle Scholar
  9. 9.
    Xiaodiong, L., Qingling, Z.: New approach to H  ∞  controller designs based on observers for T-S fuzzy systems via LMI. Automatica 39, 1571–1582 (2003)CrossRefGoogle Scholar
  10. 10.
    Guan, Y., Saif, M.: A novel approach to the design of unknown input observers. IEEE Transactions on Automatic Control 36(5), 632–635 (1991)CrossRefGoogle Scholar
  11. 11.
    Floquet, T., Barbot, J.P.: A sliding mode approach of unknown input observers for linear systems. In: IEEE Conference on Desicion and Control, pp. 1724–1729 (2004)Google Scholar
  12. 12.
    Yang, F., Wilde, R.W.: Observers for linear systems with unknown inputs. IEEE Trans. Automatic Control 33, 677–681 (1988)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Darouach, M., Zasadzinski, M., Xu, S.J.: Full-order observers for linear systems with unknown inputs. IEEE Trans. Automatic Control 39, 606–609 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Syrmos, V.L.: Computational observer design techniques for linear systems with unknown inputs using the concept of transmission zeros. IEEE Transactions on Automatic Control 38(5), 790–794 (1993)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lin, S.F., Wang, A.P.: Unknown input observers for singular systems designed by eigenstructure assignment. Journal of the Franklin Institute 340(1), 43–61 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Koenig, D.: Unknown input proportional T-S-integral observer design for descriptor systems: application to state and fault estimation. IEEE Transactions on Automatique Control 5(2), 213–217 (2005)MathSciNetGoogle Scholar
  17. 17.
    Ha, Q.P., Trinh, H.: State and input simultaneous estimation for a class of nonlinear systems. Automatica 40(10), 1779–1785 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2001) ISBN 0-521-53352-XGoogle Scholar
  19. 19.
    Gonzalez-Miranda, J.M.: Synchronization and Control of Chaos. An introduction for scientists and engineers. Imperial College Press (2004) ISBN 1-86094-488-4Google Scholar
  20. 20.
    Controlling chaos. In: Schuster, H.G. (ed.) Handbook of Chaos Control. Wiley-VCH, New YorkGoogle Scholar
  21. 21.
    Sushchik, M.M., Rulkov, N.F., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. In: Proceedings of 1995 Intl. Symp. on Nonlinear Theory and Appl., vol. 2, pp. 949–952. IEEE (1995)Google Scholar
  22. 22.
    Brown, R., Rulkov, N.F., Tracy, E.R.: Modeling and synchronization chaotic system from time-series data. Phys. Rev. E 49, 3784 (1994)CrossRefGoogle Scholar
  23. 23.
    Nolle, L., Goodyear, A., Hopgood, A.A., Picton, P.D., Braithwaite, N.: On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Nolle, L., Zelinka, I., Hopgood, A.A., Goodyear, A.: Comparison of an self organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advances in Engineering Software 36(10), 645–653 (2005)CrossRefGoogle Scholar
  25. 25.
    Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price, K.V., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global Optimization, pp. 499–512. Springer, New York (2006)Google Scholar
  26. 26.
    Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. IFAC, Prague (2005)Google Scholar
  27. 27.
    Ivan, Z.: Investigation on Evolutionary Deterministic Chaos Control – Extended Study. In: 19th International Conference on Simulation and Modeling (ECMS 2005), Riga, Latvia, June 1-4 (2005b)Google Scholar
  28. 28.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of Chaos Control. Chaos, Solitons, Fractals (2007), doi:10.1016/j.chaos.2007.07.045Google Scholar
  29. 29.
    Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems. Springer, Germany (2010)MATHCrossRefGoogle Scholar
  30. 30.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A linear Matrix Inequality Approach. John Wiley & Sons, Inc. (2001)Google Scholar
  31. 31.
    Chadli, M., Maquin, D., Ragot, J.: Stability analysis and design for continuous-time Takagi-Sugeno control systems. International Journal of Fuzzy Systems 7(3), 101–109 (2005)MathSciNetGoogle Scholar
  32. 32.
    Johansson, M., Rantzer, A., Arzn, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. on Fuzzy Systems 7(6), 713–722 (1999)CrossRefGoogle Scholar
  33. 33.
    Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems 11(4), 582–589 (2003)CrossRefGoogle Scholar
  34. 34.
    Chadli, M.: An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian Journal of Control 12(4), 524–530 (2010)MathSciNetGoogle Scholar
  35. 35.
    Chilali, M., Gahinet, P.: H  ∞  Design with pole placement constraints: an LMI approch. IEEE Transactions on Automatic Control 41(3), 358–367 (1996)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals 23, 183–193 (2005)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Chen, M., Zhou, D., Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos, Solitons and Fractals 24, 1025–1030 (2005)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized State-Space Observers for Chaotic Synchronization and Secure Communication. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3), 345–349 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Alvares, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals 21(4), 783–787 (2004)CrossRefGoogle Scholar
  40. 40.
    Akhenak, A., Chadli, M., Ragot, J., Maquin, D.: Unknown input multiple observer based approach: application to secure communication. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, June 28-30 (2006)Google Scholar
  41. 41.
    Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Chadli, M., Karimi, H.R.: Robust Observer Design for Unknown Inputs Takagi-Sugeno Models. IEEE Trans. on Fuzzy Systems (2012), doi:10.1109/TFUZZ.2012.2197215Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Picardie Jules VerneAmiensFrance

Personalised recommendations