Advertisement

Application of Self-Organizing Migrating Algorithm in Five-Dimensional Chaotic Synchronization Systems via Active-Passive Decomposition

Conference paper
  • 1.2k Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 192)

Abstract

This paper aims to present the combination of chaotic signal and evolutionary algorithm to estimate the unknown parameters in five-dimensional chaotic synchronization system via the active-passive decomposition method. The self-organizing migrating algorithm was used to estimate the unknown parameters. Based on the results from evolutionary algorithm, two identical chaotic systems were synchronized.

Keywords

Chaotic System Chaotic Attractor Synchronization Error Chaotic Signal Evolutionary Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, M., Han, Z.: Controlling and synchronizing chaotic genesio system via nonlinear feedback control. Chaos, Solitons & Fractals 17(4), 709–716 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ding, M., Ott, E.: Enhancing synchronism of chaotic systems. Physical Review E 49(2), 945–948 (1994)CrossRefGoogle Scholar
  3. 3.
    Ivan, Z.: Soma–self organizing migrating algorithm. New Optimization Techniques in Engineering, ch. 7, 33 p. Springer (2004) ISBN pp. 3–540Google Scholar
  4. 4.
    Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Physical Review Letters 74(25), 5028–5031 (1995)CrossRefGoogle Scholar
  5. 5.
    Nguyen, T., Zelinka, I.: Using method of artificial intelligence to estimate parameters of chaotic synchronization system. In: Proceedings of 17th International Conference on Soft Computing, vol. 1, pp. 22–29 (2011)Google Scholar
  6. 6.
    Parlitz, U.: Estimating model parameters from time series by autosynchronization. Physical Review Letters 76(8), 1232–1235 (1996)CrossRefGoogle Scholar
  7. 7.
    Pecora, L., Carroll, T.: Synchronization in chaotic systems. Physical Review Letters 64(8), 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Roy, D., Musielak, Z.: Generalized lorenz models and their routes to chaos. ii. energy-conserving horizontal mode truncations. Chaos, Solitons & Fractals 31(3), 747–756 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Shen, L., Wang, M.: Robust synchronization and parameter identification on a class of uncertain chaotic systems. Chaos, Solitons & Fractals 38(1), 106–111 (2008)CrossRefGoogle Scholar
  10. 10.
    Wu, X., Hu, H., Zhang, B.: Parameter estimation only from the symbolic sequences generated by chaos system. Chaos, Solitons & Fractals 22(2), 359–366 (2004)CrossRefGoogle Scholar
  11. 11.
    Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary techniques. Engineering Applications of Artificial Intelligence 22(2), 283–297 (2009)CrossRefGoogle Scholar
  12. 12.
    Zelinka, I.: Self-organizing migrating algorithm (2011), http://www.ft.utb.cz/people/zelinka/soma/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  3. 3.Faculty of Electrical Engineering and Computing ScienceTechnical University of OstravaOstravaCzech Republic

Personalised recommendations