Evolutionary Synthesis of Control Rules by Means of Analytic Programming for the Purpose of High Order Oscillations Stabilization of Evolutionary Synthesized Chaotic System

  • Roman SenkerikEmail author
  • Zuzana Oplatkova
  • Ivan Zelinka
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 192)


In this paper, it is presented a utilization of tool for symbolic regression, which is analytic programming, for the purpose of the synthesis of a new control law. This synthesized chaotic controller secures the stabilization of high periodic orbit – oscillations between several values of selected one-dimensional discrete chaotic system, which is artificially evolutionary synthesized system. The paper consists of the descriptions of analytic programming as well as chaotic system, used evolutionary techniques and the cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) and Differential evolution (DE) were used.


Evolutionary Algorithm Differential Evolution Chaotic System Control Rule Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals 40(1), 111–129 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Computers & Mathematics with Applications 60(4), 1026–1037 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Pyragas, K.: Control of chaos via extended delay feedback. Physics Letters A 206, 323–330 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H.G. (ed.) Handbook of Chaos Control. Wiley-Vch (1999)Google Scholar
  5. 5.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Physics Letters A 170, 421–428 (1992)CrossRefGoogle Scholar
  6. 6.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Mathematical and Computer Modelling (2010), doi: 10.1016/j.mcm.2011.05.030Google Scholar
  7. 7.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Evolutionary Synthesis of Control Law for Higher Periodic Orbits of Chaotic Logistic Equation. In: Proceedings of 25th European Conference on Modelling and Simulation. European, pp. 452–458 (2011)Google Scholar
  8. 8.
    Oplatkova, Z., Senkerik, R., Belaskova, S., Zelinka, I.: Synthesis of Control Rule for Synthesized Chaotic System by means of Evolutionary Techniques. In: Proceedings of Mendel 2010, pp. 91–98 (2010)Google Scholar
  9. 9.
    Zelinka, I., Guanrong, C., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary algorithms. International Journal of Bifurcation and Chaos 18(4), 911–942 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Senkerik, R., Zelinka, I., Oplatkova, Z.: Optimal Control of Evolutionary Synthesized Chaotic System, VUT Brno. In: Proceedings of 15th International Conference on Soft Computing MENDEL 2009, pp. 220–227 (2009)Google Scholar
  11. 11.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study. International Journal of Simulation Systems, Science and Technology 9, 44–56 (2005)Google Scholar
  12. 12.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011)Google Scholar
  13. 13.
    Lampinen, J., Zelinka, I.: New Ideas in Optimization – Mechanical Engineering Design Optimization by Differential Evolution, vol. 1, 20 p. McGraw-Hill, London (1999) ISBN 007-709506-5 Google Scholar
  14. 14.
    Oplatkova, Z., Zelinka, I.: Investigation on Evolutionary Synthesis of Movement Commands. Modelling and Simulation in Engineering 2009 (2009)Google Scholar
  15. 15.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering. Springer (2004) ISBN 3-540-20167XGoogle Scholar
  16. 16.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)Google Scholar
  17. 17.
    Price, K., Storn, R.: Differential evolution homepage (2001), (accessed May 15, 2012)
  18. 18.
    Matousek, R.: GAHC: Improved GA with HC station. In: Proceedings of WCECS 2007, pp. 915–920 (2010) ISBN: 978‐988‐98671‐6‐4Google Scholar
  19. 19.
    Matousek, R.: HC12: The Principle of CUDA Implementation. In: Proceedings of MENDEL 2010, pp. 303–308 (2010) ISBN: 978‐80‐214‐4120‐ 0Google Scholar
  20. 20.
    Varacha, P., Jasek, R.: ANN Synthesis for an Agglomeration Heating Power Consumption Approximation. In: Recent Researches in Automatic Control, pp. 239–244. WSEAS Press, Montreux (1804) ISBN 978-1-61804-004-6Google Scholar
  21. 21.
    Varacha, P., Zelinka, I.: Distributed Self-Organizing Migrating Algorithm Application and Evolutionary Scanning. In: Proceedings of the 22nd European Conference on Modelling and Simulation ECMS, pp. 201–206 (2008) ISBN 0-9553018-5-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roman Senkerik
    • 1
    Email author
  • Zuzana Oplatkova
    • 1
  • Ivan Zelinka
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer Science, Department of Computer ScienceVŠB-Technical University of OstravaOstravaCzech Republic

Personalised recommendations