Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 120))

  • 1422 Accesses

Abstract

In this study, the method of numerical mixing analysis is presented for three-dimensional ocean models with general vertical coordinates. Numerical mixing of a scalar is defined as the decay of the square of the scalar due to the three-dimensional advection discretisation. It is shown that for any advection scheme the numerical mixing can be calculated as the difference between the advected square of the scalar and the square of the advected tracer, divided by the time step. Special emphasis on directional-split advection schemes is made. It is shown that for those directional-split schemes the numerical analysis method is exact only when the involved advection of the square of the scalar is carried out individually for each split step. As applications, an idealised meso-scale eddy test scenario without any explicit mixing is calculated. It is shown that only for high-order advection schemes for the scalar (salinity in that case) and the momentum, a physically reasonable solution is obtained. Finally, the method is demonstrated for a fully realistic application to the dynamics of the Western Baltic Sea. Here it becomes clear that physical and numerical mixing depend on each others (increased physical mixing leads to decreased numerical mixing) with the dynamically most relevant mixing being the effective mixing, i.e., the sum of the physical and the numerical mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burchard, H.: Quantitative analysis of numerically induced mixing and dissipation in discretisations of shallow water equations. Int. J. Geomath. 3, 51–65 (2012)

    Article  MathSciNet  Google Scholar 

  2. Burchard, H., Bolding, K.: GETM – a general estuarine transport model. Scientific Documentation. Tech. Rep. No. EUR 20253 EN, European Commission 29, 157 p. (2002)

    Google Scholar 

  3. Burchard, H., Bolding, K., Villarreal, M.R.: Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn. 54, 250–265 (2004)

    Article  Google Scholar 

  4. Burchard, H., Janssen, F., Bolding, K., Umlauf, L., Rennau, H.: Model simulations of dense bottom currents in the Western Baltic Sea. Cont. Shelf Res. 29, 205–220 (2009)

    Article  Google Scholar 

  5. Burchard, H., Lass, H.U., Mohrholz, V., Umlauf, L., Sellschopp, J., Fiekas, V., Bolding, K., Arneborg, L.: Dynamics of medium-intensity dense water plumes in the Arkona Sea, Western Baltic Sea. Ocean Dyn. 55, 391–402 (2005)

    Article  Google Scholar 

  6. Burchard, H., Petersen, O.: Hybridisation between σ and z coordinates for improving the internal pressure gradient calculation in marine models with steep bottom slopes. Int. J. Numer. Meth. Fluids 25, 1003–1023 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burchard, H., Rennau, H.: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model. 20, 293–311 (2008)

    Article  Google Scholar 

  8. Fennel, W., Radtke, H., Schmidt, M., Neumann, T.: Transient upwelling in the central Baltic Sea. Cont. Shelf Res. 30, 2015–2026 (2010)

    Article  Google Scholar 

  9. Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusivity in z-level ocean models. part I: 1-Dimensional case studies. Ocean Model. 35, 173–186 (2010)

    Article  Google Scholar 

  10. Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusion in z-level ocean models. Part II: 1-Dimensional case studies. Ocean Model. 45-46, 27–36 (2012)

    Article  Google Scholar 

  11. Gräwe, U., Burchard, H.: Storm surges in the Western Baltic Sea: the present and a possible future. Clim. Dyn. (in print, 2012)

    Google Scholar 

  12. Griffiths, R.W., Linden, P.F.: The stability of vortices in a rotating, stratified fluid. J. Fluid Mech. 105, 283–316 (1981)

    Article  Google Scholar 

  13. Hofmeister, R., Beckers, J.-M., Burchard, H.: Realistic modelling of the major inflows into the central Baltic Sea in 2003 using terrain-following coordinates. Ocean Model. 39, 233–247 (2011)

    Article  Google Scholar 

  14. Hofmeister, R., Burchard, H., Beckers, J.-M.: Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model. 33, 70–86 (2010)

    Article  Google Scholar 

  15. Leonard, B.P.: The Ultimate conservative difference scheme applied to unsteady one-dimensional advection. Comput. Meth. Appl. Mech. Eng. 88, 17–74 (1991)

    Article  MATH  Google Scholar 

  16. Pietrzak, J.: The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon. Weather Rev. 126, 812–830 (1998)

    Article  Google Scholar 

  17. Rennau, H., Burchard, H.: Quantitative analysis of numerically induced mixing in a coastal model application. Ocean Dyn. 59, 671–687 (2009)

    Article  Google Scholar 

  18. Riemenscheider, U., Legg, S.: Regional simulations of the Faroe Bank Channel overflow in a level model. Ocean Model. 17, 93–122 (2007)

    Article  Google Scholar 

  19. Roe, P.L.: Some contributions to the modeling of discontinuous flows. Lect. Notes Appl. Math. 22, 163–193 (1985)

    MathSciNet  Google Scholar 

  20. Sellschopp, J., Arneborg, L., Knoll, M., Fiekas, V., Gerdes, F., Burchard, H., Lass, H.U., Mohrholz, V., Umlauf, L.: Direct observations of a medium-intensity inflow into the Baltic Sea. Cont. Shelf Res. 26, 2393–2414 (2006)

    Article  Google Scholar 

  21. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  22. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Num. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tartinville, B., Deleersnijder, E., Lazure, P., Proctor, R., Ruddick, K.G., Uittenbogaard, R.E.: A coastal ocean model comparison study for a three-dimensional idealised test case. App. Math. Model. 22, 165–182 (1998)

    Article  MATH  Google Scholar 

  24. Umlauf, L., Arneborg, L.: Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure. J. Phys. Oceanogr. 39, 2385–2401 (2009)

    Article  Google Scholar 

  25. Umlauf, L., Arneborg, L., Burchard, H., Fiekas, V., Lass, H.U., Mohrholz, V., Prandke, H.: The transverse structure of turbulence in a rotating gravity current. Geophys. Res. Lett. 34, L08601 (2007), doi:10.1029/2007GL029521

    Google Scholar 

  26. Umlauf, L., Burchard, H.: Second-order turbulence models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25, 795–827 (2005)

    Article  Google Scholar 

  27. van der Lee, E.M., Umlauf, L.: Internal-wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J. Geophys. Res. 116 (2011), doi:10.1029/2011JC007072

    Google Scholar 

  28. van Leer, B.: Toward the ultimate conservative difference scheme. V: A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Burchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burchard, H., Gräwe, U. (2013). Quantification of Numerical and Physical Mixing in Coastal Ocean Model Applications. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics