Skip to main content

Solving Nonlinear Systems Inside Implicit Time Integration Schemes for Unsteady Viscous Flows

  • Chapter
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 120))

Abstract

Historically, the computation of steady flows has been at the forefront of the development of computational fluid dynamics (CFD). This began with the design of rockets and the computation of the bow shock at supersonic speeds and continued with the aerodynamic design of airplanes at transonic cruising speed [14]. Only in the last decade, increasing focus has been put on unsteady flows, which are more difficult to compute. This has several reasons. First of all, computing power has increased dramatically and for 5,000 Euro it is now possible to obtain a machine that is able to compute about a minute of realtime simulation of a nontrivial unsteady three dimensional flow in a day. As a consequence, ever more nonmilitary companies are able to employ numerical simulations as a standard tool for product development, opening up a large number of additional applications. Examples are the computation of tunnel fires [4], flow around wind turbines [29], fluid-structure-interaction like flutter [10], flows inside nuclear reactors [25], wildfires [24], hurricanes and unsteady weather phenomenas [23], gas quenching [20] and many others. More computing capacities will open up further possibilities in the next decade, which suggests that the improvement of numerical methods for unsteady flows should start in earnest now. Finally, the existing methods for the computation of steady states, while certainly not at the end of their development, have matured, making the consideration of unsteady flows interesting for a larger group of scientists. In this article, we will focus on the computation of laminar viscous flows, as modelled by the Navier-Stokes equations.

This work was supported by the DFG as part of the collaborative research area SFB TRR 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi, F., Ghidoni, A., Rebay, S.: Optimal Runge-Kutta smoothers for the p-multigrid discontinuous Galerkin solution of the 1D Euler equations. J. Comp. Phys. 11, 4153–4175 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit Time Integration Schemes for the Unsteady Compressible Navier-Stokes Equations: Laminar Flow. J. Comp. Phys. 179, 313–329 (2002)

    Article  MATH  Google Scholar 

  3. Birken, P.: Optimizing Runge-Kutta smoothers for unsteady flow problems. ETNA (submitted)

    Google Scholar 

  4. Birken, P.: Numerical simulation of tunnel fires using preconditioned finite volume schemes. ZAMP 59, 416–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caughey, D.A., Jameson, A.: How Many Steps are Required to Solve the Euler Equations of Steady Compressible Flow. In: Search of a Fast Solution Algorithm. AIAA Paper 2001-2673 (2001)

    Google Scholar 

  6. Davoudzadeh, F., Mcdonald, H., Thompson, B.E.: Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation. Computers & Fluids 24, 883–895 (1995)

    Article  MATH  Google Scholar 

  7. Dembo, R., Eisenstat, R., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuflhard, P.: Newton Methods. Springer (2004)

    Google Scholar 

  9. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farhat, C.: CFD-based Nonlinear Computational Aeroelasticity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics: Fluids, vol. 3, ch. 13, pp. 459–480. John Wiley & Sons (2004)

    Google Scholar 

  11. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code. AIAA Paper, 97-0167 (1997)

    Google Scholar 

  12. Hackbusch, W.: Multi-Grid Methods and Applications. Springer Series in Computational Mathematics, vol. 4. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  13. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA Paper 91-1596 (1991)

    Google Scholar 

  14. Jameson, A.: Aerodynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics: Fluids, vol. 3, ch. 11, pp. 325–406. John Wiley & Sons (2004)

    Google Scholar 

  15. Jothiprasad, G., Mavriplis, D.J., Caughey, D.A.: Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes. J. Comp. Phys. 191, 542–566 (2003)

    Article  MATH  Google Scholar 

  16. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  17. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Num. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klaij, C.M., van Raalte, M.H., van der Vegt, J.J.W., van der Ven, H.: h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comp. Phys. 227, 1024–1045 (2007)

    Article  MATH  Google Scholar 

  19. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comp. Phys. 193, 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lior, N.: The cooling process in gas quenching. J. Materials Processing Technology 155-156, 1881–1888 (2004)

    Article  Google Scholar 

  21. Meister, A., Sonar, T.: Finite-volume schemes for compressible fluid flow. Surv. Math. Ind. 8, 1–36 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Qin, N., Ludlow, D.K., Shaw, S.T.: A matrix-free preconditioned Newton/GMRES method for unsteady Navier-Stokes solutions. Int. J. Num. Meth. Fluids 33, 223–248 (2000)

    Article  MATH  Google Scholar 

  23. Reisner, J., Mousseau, V., Wyszogrodzki, A., Knoll, D.A.: A fully implicit hurricane model with physics-based preconditioning. Monthly Weather Review 133, 1003–1022 (2005)

    Article  Google Scholar 

  24. Reisner, J., Wyszogrodzki, A., Mousseau, V., Knoll, D.: An efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows. J. Comp. Phys. 189, 30–44 (2003)

    Article  MATH  Google Scholar 

  25. Reitsma, F., Strydom, G., de Haas, J.B.M., Ivanov, K., Tyobeka, B., Mphahlele, R., Downar, T.J., Seker, V., Gougar, H.D., Da Cruz, D.F., Sikik, U.E.: The PBMR steadystate and coupled kinetics core thermal-hydraulics benchmark test problems. Nuclear Engineering and Design 236, 657–668 (2006)

    Article  Google Scholar 

  26. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. van Leer, B., Tai, C.-H., Powell, K.G.: Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations. AIAA 89-1933-CP 40–59 (1989)

    Google Scholar 

  28. Wesseling, P.: An Introduction to Multigrid Methods. R T Edwards Inc. (2004)

    Google Scholar 

  29. Zahle, Z., Soerensen, N.N., Johansen, J.: Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method. Wind Energy 12, 594–619 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Birken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birken, P. (2013). Solving Nonlinear Systems Inside Implicit Time Integration Schemes for Unsteady Viscous Flows. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics