A New Stiffly Accurate Rosenbrock-Wanner Method for Solving the Incompressible Navier-Stokes Equations

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 120)


One possibility to solve stiff ODEs like the example of Prothero and Robinson [21] or differential algebraic equations are Runge-Kutta methods (RK methods) [9, 31]. Explicit RK methods may not be a good choice since for getting a stable numerical solution a stepsize restriction should be accepted, i.e. the problem should be solved with very small timesteps. Therefore it might be better to use implicit or linear implicit RK methods, so-called Rosenbrock–Wanner methods. Fully implicit RK methods may be ineffective for solving high dimensional ODEs since they need a high computational effort to solve the huge nonlinear system. Therefore we consider in this note diagonally implicit RK methods (DIRK methods).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible navier-stokes equations: Laminar flow. Journal of Computational Physics 179, 313–329 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1996)MATHGoogle Scholar
  3. 3.
    Butcher, J.W.: On Runge–Kutta processes of high order. J. Austral. Math. Soc. 4, 179–194 (1964)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davis, T.A.: Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2), 166–199 (2004)Google Scholar
  5. 5.
    Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2), 165–195 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes equations. Springer, Heidelberg (1986)MATHCrossRefGoogle Scholar
  7. 7.
    Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., et al. (eds.) Numerical Methods for Fluids (Part 3). Handb. Numer. Anal. 9, pp. 3–1176. North-Holland, Amsterdam (2003)CrossRefGoogle Scholar
  8. 8.
    Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method. Wiley, Chichester (2000)MATHGoogle Scholar
  9. 9.
    Hairer, E., Wanner, G.: Solving ordinary differential equations. II: Stiff and differential-algebraic problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)MATHGoogle Scholar
  10. 10.
    John, V.: Reference values for drag and lift of a two–dimensional time dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    John, V., Matthies, G.: Higher order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37, 885–903 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    John, V., Matthies, G.: MooNMD - a program package based on mapped finite element methods. Comput. Visual. Sci. 6, 163–170 (2004)MathSciNetMATHGoogle Scholar
  13. 13.
    John, V., Matthies, G., Rang, J.: A comparison of time-discretization/linearization approaches for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195, 5995–6010 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    John, V., Rang, J.: Adaptive time step control for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199, 514–524 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lubich, C., Roche, M.: Rosenbrock Methods for Differential-algebraic Systems with Solution-dependent Singular Matrix Multiplying the Detivative. Computing 43, 325–342 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15(4), 555–583 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Lang, J., Teleaga, D.: Towards a fully space-time adaptive fem for magnetoquasistatics. IEEE Trans. Magn. 44, 1238–1241 (2008)CrossRefGoogle Scholar
  18. 18.
    Lang, J., Verwer, J.: ROS3P - an Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems. BIT 41(4), 730–737 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ostermann, A., Roche, M.: Runge-Kutta methods for partial differential equations and fractional orders of convergence. Math. Comput. 59(200), 403–420 (1992)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ostermann, A., Roche, M.: Rosenbrock methods for partial differential equations and fractional orders of convergence. SIAM J. Numer. Anal. 30(4), 1084–1098 (1993)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comp. 28, 145–162 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rang, J., Angermann, L.: New Rosenbrock methods for partial differential algebraic equations of index 1. BIT 45(4), 761–787 (2005)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Rang, J., Angermann, L.: New Rosenbrock methods of order 3 for PDAEs of index 2. Adv. Differ. Equ. Control. Process. 1(2), 193–217 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Rang, J.: Automatic step size selection for the fractional-step-θ-scheme. Preprint 06-45, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2006)Google Scholar
  25. 25.
    Rang, J.: Design of DIRK schemes for solving the Navier-Stokes-equations. Informatik-Bericht 2007-02, TU Braunschweig, Braunschweig (2007)Google Scholar
  26. 26.
    Rang, J.: Pressure corrected implicit θ-schemes for the incompressible Navier-Stokes equations. Applied Mathematics and Computation 201(1-2), 747–761 (2008)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Rang, J.: An analysis of the Prothero–Robinson example for constructing new DIRK and ROW methods. Informatik- Bericht 2012-03, TU Braunschweig, Braunschweig (2012) Google Scholar
  28. 28.
    Scholz, S.: Order barriers for the B-convergence of ROW methods. Computing 41(3), 219–235 (1989)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Schäfer, M., Turek, S.: The benchmark problem ”Flow around a cylinder”. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 52, pp. 547–566. Vieweg (1996)Google Scholar
  30. 30.
    Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications. Preprint 1741, Technische Universität Darmstadt, Darmstadt (1995)Google Scholar
  31. 31.
    Strehmel, K., Weiner, R.: Linear-implizite Runge–Kutta-Methoden und ihre Anwendung. Teubner-Texte zur Mathematik, vol. 127. Teubner, Stuttgart (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Scientific ComputingTU BraunschweigBraunschweigGermany

Personalised recommendations