Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 120))

Abstract

We discuss linear and nonlinear boundary conditions for wave propagation problems. The concepts of well-posedness and stability are discussed by considering a specific example of a boundary condition occurring in the modeling of earthquakes. That boundary condition can be formulated in a linear and nonlinear way and implemented in a characteristic and non-characteristic way. These differences are discussed and the implications and difficulties are pointed out. Numerical simulations that illustrate the theoretical discussion are presented together with an application that show that the methodology can be used for practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Ditkowski, A., Gustafsson, B.: On error bounds of finite difference approximations to partial differential equations - temporal behavior and rate of convergence. Journal of Scientific Computing 15(1), 79–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berg, J., Nordström, J.: Stable Robin solid wall boundary conditions for the Navier-Stokes equations. Journal of Computational Physics 230, 7519–7532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. Journal of Computational Physics 148, 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunham, E.M., Kozdon, J.E.: Rupture dynamics of subduction megathrust earthquakes. Abstract T31E-05 Presented at 2011 Fall Meeting, San Francisco, California, USA (2011)

    Google Scholar 

  5. Gong, J., Nordström, J.: Interface procedures for finite difference approximations of the advection diffusion equation. Journal of Computational and Applied Mathematics 236(5), 602–620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. John Wiley & Sons, Inc. (1995)

    Google Scholar 

  7. Kozdon, J.E., Dunham, E.M.: Rupture to the trench in dynamic models of the tohoku-oki earthquake. Abstract U51B-0041 Presented at 2011 Fall Meeting, AGU, San Francisco, California, USA (2011)

    Google Scholar 

  8. Kozdon, J.E., Dunham, E.M., Nordström, J.: Interaction of waves with frictional interfaces using summation-by-parts difference operators: Weak enforcement of nonlinear boundary conditions. Journal of Scientific Computing 50(2), 341–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kozdon, J.E., Dunham, E.M., Nordström, J.: Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. Technical Report 2012:2, Linköping University, Computational Mathematics (2012)

    Google Scholar 

  10. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: De Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equation, Academic Press, New York (1974)

    Google Scholar 

  11. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. Journal of Computational Physics 199, 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comp. 30(1), 46–59 (2007)

    Article  MATH  Google Scholar 

  13. Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high order finite difference methods applied to the Euler and Navier-Stokes equations. Journal of Computational Physics 148, 621–645 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nordström, J., Carpenter, M.H.: High-order finite difference methods, multidimensional linear problems and curvilinear coordinates. Journal of Computational Physics 173, 149–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nordström, J., Gong, J., van der Weide, E., Svärd, M.: A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. Journal of Computational Physics 228(24), 9020–9035 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nordström, J., Svärd, M.: Well-posed boundary conditions for the Navier-Stokes equations. SIAM Journal on Numerical Analysis 43(3), 1231–1255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. Journal of Scientific Computing 29, 375–404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strand, B.: Summation by parts for finite difference approximation for d/dx. Journal of Computational Physics 110(1), 47–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Svärd, M., Carpenter, M.H., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations: far-field boundary conditions. Journal of Computational Physics 225(1), 1020–1038 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. Journal of Computational Physics 218(1), 333–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Svärd, M., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions. Journal of Computational Physics 227(10), 4805–4824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nordström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nordström, J. (2013). Linear and Nonlinear Boundary Conditions for Wave Propagation Problems. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics