Skip to main content

Abstract

Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for one-dimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total variation diminishing (TVD) property. The study of these properties will be done within the framework of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22, 2256–2281 (2000)

    Article  MathSciNet  Google Scholar 

  3. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Review 42, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  4. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific (2011)

    Google Scholar 

  5. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge-Kutta methods. BIT 41, 504–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math. Comp. 74, 201–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I – Nonstiff Problems, 2nd edn. Springer Series Comput. Math., vol. 8. Springer (1993)

    Google Scholar 

  9. Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirby, R.: On the convergence of of high resolution methods with multiple time scales for hyperbolic conservation laws. Math. Comp. 72, 1239–1250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Appl. Math. Cambridge Univ. Press (2002)

    Google Scholar 

  13. Maurits, N.M., van der Ven, H., Veldman, A.E.P.: Explicit multi-time stepping methods for convection dominated flow problems. Comput. Meth. Appl. Mech. Engrg. 157, 133–150 (1998)

    Article  MATH  Google Scholar 

  14. Osher, S., Sanders, R.: Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comp. 41, 321–336 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lect. Notes Comp. Sc. Eng., vol. 9, pp. 439–582. Springer (1999)

    Google Scholar 

  17. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spijker, M.N.: Stepsize restrictions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang, H.-Z., Warnecke, G.: High resolution schemes for conservation laws and convection-diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Hundsdorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hundsdorfer, W., Mozartova, A., Savcenco, V. (2013). Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics