Skip to main content

Abstract

In this paper we present a kinetic relaxation scheme for the Euler equations of gas dynamics in one space dimension. The method is easily applicable to solve any complex system of conservation laws. The numerical scheme is based on a relaxation approximation for conservation laws viewed as a discrete velocity model of the Boltzmann equation of kinetic theory. The discrete kinetic equation is solved by a splitting method consisting of a convection phase and a collision phase. The convection phase involves only the solution of linear transport equations and the collision phase instantaneously relaxes the distribution function to an equilibrium distribution. We prove that the first order accurate method is conservative, preserves the positivity of mass density and pressure and entropy stable. An anti-diffusive Chapman-Enskog distribution is used to derive a second order accurate method. The results of numerical experiments on some benchmark problems confirm the efficiency and robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  3. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95, 113–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Book  MATH  Google Scholar 

  5. Chen, G.Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deshpande, S.M.: On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations. Technical Report 2583, NASA, Langley (1986)

    Google Scholar 

  7. Deshpande, S.M.: A second order accurate, kinetic-theory based, method for inviscid compressible flows. Technical Report 2613, NASA, Langley (1986)

    Google Scholar 

  8. Deshpande, S.M.: Kinetic flux splitting schemes. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review 1995: a State-of-the-art Reference to the Latest Developments in CFD. Wiley (1995)

    Google Scholar 

  9. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Estivalezes, J.L., Villedieu, P.: High-order positivity-preserving kinetic schemes for the compressible Euler equations. SIAM J. Numer. Anal. 33, 2050–2067 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  12. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 81-1259 (1981)

    Google Scholar 

  13. Jin, S.: Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunik, M., Qamar, S., Warnecke, G.: Second-order accurate kinetic schemes for the ultra-relativistic Euler equations. J. Comput. Phys. 192, 695–726 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108, 153–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Natalini, R.: Recent results on hyperbolic relaxation problems. In: Analysis of Systems of Conservation Laws (Aachen, 1997). Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 99, pp. 128–198. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  18. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27, 1405–1421 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perthame, B.: Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raghurama Rao, S.V., Subba Rao, M.: A simple multidimensional relaxation scheme based on characteristics and interpolation. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, June 23-26. American Institute of Aeronautics and Astronautics, AIAA-2003-3535 (2003)

    Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Math., vol. 1697, pp. 1–149. Springer, Berlin (1998)

    Chapter  Google Scholar 

  25. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin (1999); A practical introduction

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Arun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arun, K.R., Lukáčová-Medvidová, M., Prasad, P., Raghurama Rao, S.V. (2013). A Second Order Accurate Kinetic Relaxation Scheme for Inviscid Compressible Flows. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics