Skip to main content

Architectural Style Classification of Domes

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2957 Accesses

Abstract

Domes are architectural structural elements characteristic for ecclesiastical and secular monumental buildings, like churches, basilicas, mosques, capitols and city halls. In the scope of building facade architectural style classification the current paper addresses the problem of architectural style classification of facade domes. Building facade classification by architectural styles is achieved by classification and voting of separate architectural elements, like domes, windows, towers, etc. Typical forms of the structural elements bear the signature of each architectural style. Our approach classifies domes of three architectural styles - Renaissance, Russian and Islamic. We present a three-step approach, which in the first step analyzes the height and width of the dome for the identification of Islamic saucer domes, in the second step detects golden color in YCbCr color space to determine Russian golden onion domes and in the third step performs classification based on dome shapes, using clustering and learning of local features. Thus we combine three features - the relation of dome width and height, color and shape, in a single methodology to achieve high classification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proc. of ICCV and PR, pp. 1085–1092 (2009)

    Google Scholar 

  2. Zhang, W., Kosecka, J.: Hierarchical building recognition. Image and Vision Computing 25(5), 704–716 (2004)

    Article  Google Scholar 

  3. Li, Y., Crandall, D., Huttenlocher, D.: Landmark classification in large-scale image collections. In: Proc. of IEEE 12th ICCV, pp. 1957–1964 (2009)

    Google Scholar 

  4. Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrating recognition and reconstruction. IJCV 78, 121–141 (2008)

    Article  Google Scholar 

  5. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Transaction on Graphics 25, 835–846 (2006)

    Article  Google Scholar 

  6. Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Architectural Style Classification of Building Facade Windows. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 280–289. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Classification of gothic and baroque architectural elements. In: Proc. of the 19th IWSSIP, Vienna, Austria, pp. 330–333 (2012)

    Google Scholar 

  8. Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., Gool, L.V.: Automatic architectural style recognition. In: Proc. of the 4th International Workshop on 3D Virtual Reconstruction and Visualization of Complex Architectures. International Society for Photogrammetry and Remote Sensing, Trento (2011)

    Google Scholar 

  9. Rosengarten, A.: A handbook of architectural styles. Chatto and Windus, London (1912)

    Google Scholar 

  10. Basilio, J.A.M., Torres, G.A., Pérez, G.S., Medina, L.K.T., Meana, H.M.P.: Explicit image detection using ycbcr space color model as skin detection. In: Proc. of the 2011 American Conference on Applied Mathematics and the 5th WSEAS International Conference on Computer Engineering and Applications, pp. 123–128 (2011)

    Google Scholar 

  11. Maglogiannis, I., Vouyioukas, D., Aggelopoulos, C.: Face detection and recognition of natural human emotion using markov random fields. Personal and Ubiquitous Computing 13(1), 95–101 (2009)

    Article  Google Scholar 

  12. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  13. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979)

    Article  Google Scholar 

  14. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)

    Article  MATH  Google Scholar 

  15. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  16. Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the difference of lowpass transform. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(2), 156–170 (1984)

    Article  Google Scholar 

  17. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conference, pp. 147–151 (1998)

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Internationl Conference in Computer Vision, pp. 525–531 (2001)

    Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. Matas, J., Chum, O., Urban, M., Pajdla1, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)

    Google Scholar 

  21. Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based on local, affinely invariant regions. In: BMVC, pp. 412–425 (2000)

    Google Scholar 

  22. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  23. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shalunts, G., Haxhimusa, Y., Sablatnig, R. (2012). Architectural Style Classification of Domes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics