Skip to main content

Biometrics from Gait Using Feature Value Method

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7557))

Abstract

In order to develop truly intelligent systems, it is necessary to improve their ability to understand non-verbal communication. We propose a novel framework to recognize individuals and emotions from gait, in order to improve HRI. We collected the motion data of the torso from 4 professional actors’ gait, using motion capture system, and 7 non-actors’ using 2 IMU sensors. We developed Feature Value Method which is a PCA based classifier and finally we achieved high recognition rate through cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Loula, F., Prasad, S., Harber, K., Shiffrar, M.: Recognizing people from their movement. J. of Experimental Psychology: Human Perception and Performance 31(1), 210–220 (2005)

    Article  Google Scholar 

  2. Jokisch, D., Daum, I., Troje, N.: Self-recognition versus recognition of others by biological motion: Viewpoint-depedent effects. Perception 35, 911–920 (2006)

    Article  Google Scholar 

  3. Cutting, J., Kozlowski, L.: Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin of Psychonomic Society 9(5), 353–356 (1977)

    Google Scholar 

  4. Jain, A., Bolle, J., Pankanti, S.: Biometrics-Personal Identification in Networked Society. Springer US (2002)

    Google Scholar 

  5. Nixon, M.: Gait biometrics. Biometric Technology Today 16(7-8), 8–9 (2008)

    Article  Google Scholar 

  6. de Gelder, B.: Towards the neurobiology of emotional body language. Nature Reviews, Neuroscience 7, 242–249 (2006)

    Article  Google Scholar 

  7. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann Machines for modeling motion style. In: Proc. of the 26th International Conference on Machine Learning, pp. 1025–1032 (2009)

    Google Scholar 

  8. Murray, P., Drought, B., Kory, R.: Walking patterns of normal men. Journal of Bone and Joint Surgery 46(2), 335–360 (1964)

    Google Scholar 

  9. Boyd, J.E., Little, J.J.: Biometric Gait Recognition. In: Tistarelli, M., Bigun, J., Grosso, E. (eds.) Advanced Studies in Biometrics. LNCS, vol. 3161, pp. 19–42. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Troje, N.: Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. J. of Vision 2(5), 371–387 (2002)

    Google Scholar 

  11. Kadone, H., Nakamura, Y.: Symbolic Memory of Motion Patterns by an Associative Memory Dynamics with Self-organizing Nonmonotonicity. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 203–213. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Zhang, T., Venture, G.: Emotion Recognition from Walk Pattern. In: 21st An. Conf. of the Japanese Neural Network Society, Okinawa, Japan, pp. 196–197 (December 2011)

    Google Scholar 

  13. Venture, G.: Human Characterization and Emotion Characterization from Gait. In: Proc. of the IEEE Int. Conf. Engineering in Medicine and Biology, Buenos Aires, Argentina, pp. 1292–1295 (2010)

    Google Scholar 

  14. Kadone, H., Hicheur, H., Grezes, J., Berthoz, A.: Nature of the kin-ematic cues underlying the perception of emotions during human gait. In: Proc. of the XIX Conf. of the Int. Society for Posture and Gait Research, vol. O-25 (2009)

    Google Scholar 

  15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)

    Google Scholar 

  16. Burges, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 1–47 (1988)

    Google Scholar 

  17. Osuna, E., et al.: Support Vector Machines: Training and Applications, A.I. Memo 1602. MIT Press (1988)

    Google Scholar 

  18. Karg, M., et al.: A comparison of PCA, KPCA and LDA for feature extraction to recognize affect in gait kinematics. In: Proc. of the 3rd International Conference on Affective Computing and Intelligent Interaction (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, T., Venture, G. (2012). Biometrics from Gait Using Feature Value Method. In: Ramsay, A., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2012. Lecture Notes in Computer Science(), vol 7557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33185-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33185-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33184-8

  • Online ISBN: 978-3-642-33185-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics