Augmented Multitouch Interaction upon a 2-DOF Rotating Disk

  • Xenophon Zabulis
  • Panagiotis Koutlemanis
  • Dimitris Grammenos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)


A visual user interface providing augmented, multitouch interaction upon a non-instrumented disk that can dynamically rotate in two axes is proposed. While the user manipulates the disk, the system uses a projector to visualize a display upon it. A depth camera is used to estimate the pose of the surface and multiple simultaneous fingertip contacts upon it. The estimates are transformed into meaningful user input, availing both fingertip contact and disk pose information. Calibration and real-time implementation issues are studied and evaluated through extensive experimentation. We show that the outcome meets accuracy and usability requirements for employing the approach in human computer interaction.


Disk Surface Depth Camera Pilot Application User Hand Touch Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rowell, L.: Scratching the surface. NetWorker 10, 26–32 (2006)CrossRefGoogle Scholar
  2. 2.
    Rekimoto, J.: Smartskin: an infrastructure for freehand manipulation on interactive surfaces. In: CHI, pp. 113–120 (2002)Google Scholar
  3. 3.
    Streitz, N., Tandler, P., Muller-Tomfelde, C., Konomi, S.: Roomware: Towards the next generation of human-computer interaction based on an integrated design of real and virtual worlds (2001)Google Scholar
  4. 4.
    Wilson, A.: Playanywhere: a compact interactive tabletop projection-vision system. In: UIST, pp. 83–92 (2005)Google Scholar
  5. 5.
    Han, J.: Low-cost multi-touch sensing through frustrated total internal reflection. In: UIST, pp. 115–118 (2005)Google Scholar
  6. 6.
    Gross, T., Fetter, M., Liebsch, S.: The cuetable: cooperative and competitive multi-touch interaction on a tabletop. In: CHI, pp. 3465–3470 (2008)Google Scholar
  7. 7.
    Gaver, W., Bowers, J., Boucher, A., Gellerson, H., Pennington, S., Schmidt, A., Steed, A., Villars, N., Walker, B.: The drift table: designing for ludic engagement. In: CHI, pp. 885–900 (2004)Google Scholar
  8. 8.
    Microsoft (Microsoft surface),
  9. 9.
    Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: UIST, pp. 219–226 (2001)Google Scholar
  10. 10.
    SMART: Smart table (2008),
  11. 11.
    Pinhanez, C.: Using a steerable projector and a camera to transform surfaces into interactive displays. In: CHI, pp. 369–370 (2001)Google Scholar
  12. 12.
    Kjeldsen, R., Pinhanez, C., Pingali, G., Hartman, J., Levas, T., Podlaseck, M.: Interacting with steerable projected displays. In: FG (2002)Google Scholar
  13. 13.
    Jones, B., Sodhi, R., Campbell, R., Garnett, G., Bailey, B.: Build your world and play in it: Interacting with surface particles on complex objects. In: ISMAR, pp. 165–174 (2010)Google Scholar
  14. 14.
    Harrison, C., Benko, H., Wilson, A.: Omnitouch: wearable multitouch interaction everywhere. In: UIST, pp. 441–450 (2011)Google Scholar
  15. 15.
    Song, P., Winkler, S., Tedjokusumo, J.: A tangible game interface using projector-camera systems. In: HCI, pp. 956–965 (2007)Google Scholar
  16. 16.
    Grammenos, D., Michel, D., Zabulis, X., Argyros, A.: Paperview: augmenting physical surfaces with location-aware digital information. In: TEI, pp. 57–60 (2011)Google Scholar
  17. 17.
    Reitmayr, G., Eade, E., Drummond, T.: Localisation and interaction for augmented maps. In: ISMAR, pp. 120–129 (2005)Google Scholar
  18. 18.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, C., Zhang, Z.: Calibration between depth and color sensors for commodity depth cameras. In: ICME, pp. 1–6 (2011)Google Scholar
  20. 20.
    Vezhnevets, V., Velizhev, A., Chetverikov, N., Yakubenko, A.: GML C++ camera calibration toolbox (2011),
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  22. 22.
    Wilson, A.: Using a depth camera as a touch sensor. In: ACM Int. Conf. on Interactive Tabletops and Surfaces, pp. 69–72 (2010)Google Scholar
  23. 23.
    Argyros, A.A., Lourakis, M.I.A.: Real-Time Tracking of Multiple Skin-Colored Objects with a Possibly Moving Camera. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. Journal of Image and Video Processing, 1–10 (2008)Google Scholar
  25. 25.
    Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH, pp. 835–846 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xenophon Zabulis
    • 1
  • Panagiotis Koutlemanis
    • 1
  • Dimitris Grammenos
    • 1
  1. 1.Institute of Computer ScienceFoundation for Research and Technology - HellasHerakleionGreece

Personalised recommendations